[1]冯静,魏亚聪,刘超,等.SIRT3与胰岛素抵抗[J].国际内分泌代谢杂志,2017,37(05):337-340.
 Feng Jing,Wei Yacong,Liu Chao,et al.SIRT3 and insulin resistance[J].International Journal of Endocrinology and Metabolism,2017,37(05):337-340.
点击复制

SIRT3与胰岛素抵抗()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
37
期数:
2017年05期
页码:
337-340
栏目:
综述
出版日期:
2017-09-20

文章信息/Info

Title:
SIRT3 and insulin resistance
作者:
冯静魏亚聪刘超宋光耀
050051 石家庄,河北省人民医院内分泌科
Author(s):
Feng Jing Wei Yacong Liu Chao Song Guangyao.
*Department of Endocrinology, Hebei Province People's Hospital, Shijiazhuang 050051, China
关键词:
SIRT3 胰岛素抵抗 糖尿病 线粒体
Keywords:
SIRT3 Insulin resistance Diabetes mellitus Mitochondria
文献标志码:
A
摘要:
沉默信息调节因子(SIRT)3是哺乳动物类 NAD+依赖性组蛋白去乙酰化酶家族中的一员。研究表明,SIRT3可以改善胰岛素抵抗、增加胰岛素敏感性。其通过保护胰岛β细胞、促进骨骼肌葡萄糖摄取、调节骨骼肌代谢、减轻氧化应激、抵抗高糖诱导的细胞毒性等途径发挥作用。SIRT3为治疗2型糖尿病、肥胖、线粒体功能障碍等疾病带来了新的研究方向。
Abstract:
Sirtuin 3(SIRT3)is a member of Sirtuins family and a kind of NAD+-dependent deacetylase. Studies show that SIRT3 plays an important role in improving insulin resistance, increasing insulin sensitivity. SIRT3 can protect pancreatic β cells, facilitate glucose uptake, regulate metabolic flexibility in skeletal muscle, reduce oxidative stress and protects cells from high glucose-induced cytotoxicity. SIRT3 could be a promising target for treating diabetes, obesity and some mitochondrial dysfunctional diseases.

参考文献/References:

[1] Sheng S, Kang Y, Guo Y, et al. Overexpression of Sirt3 inhibits lipid accumulation in macrophages through mitochondrial IDH2 deacetylation[J].Int J Clin Exp Pathol,2015,8(8):9196-9201.
[2] Jin L, Galonek H, Israelian K,et al. Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3[J].Protein Sci,2009,18(3):514-525. DOI:10.1002/pro.50.
[3] Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation[J].Nature,2010,464(7285):121-125. DOI:10.1038/nature08778.
[4] Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction[J].Genes Dev,2006,20(21):2913-2921. DOI:10.1101/gad.1467506.
[5] Caton PW, Richardson SJ, Kieswich J, et al. Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients[J].Diabetologia,2013,56(5):1068-1077. DOI:10.1007/s00125-013-2851-y.
[6] Kim M, Lee JS, Oh JE,et al. SIRT3 overexpression attenuates palmitate-induced pancreatic β-cell dysfunction[J].PLoS One,2015,10(4):e0124744. DOI:10.1371/journal.pone.0124744.
[7] Lantier L, Williams AS, Williams IM,et al. SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high-fat-fed mice[J].Diabetes,2015,64(9):3081-3092. DOI:10.2337/db14-1810.
[8] Jing E, Emanuelli B, Hirschey MD,et al. Sirtuin-3(Sirt3)regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production[J].Proc Natl Acad Sci U S A,2011,108(35):14608-14613. DOI:10.1073/pnas.1111308108.
[9] Smeele KM, Eerbeek O, Koeman A,et al. Partial hexokinase Ⅱ knockout results in acute ischemia-reperfusion damage in skeletal muscle of male, but not female, mice[J].Pflugers Arch,2010,459(5):705-712. DOI:10.1007/s00424-010-0787-3.
[10] Southworth R. Hexokinase-mitochondrial interaction in cardiac tissue: implications for cardiac glucose uptake, the 18FDG lumped constant and cardiac protection[J].J Bioenerg Biomembr,2009,41(2):187-193. DOI:10.1007/s10863-009-9207-9.
[11] Pastorino JG, Hoek JB. Regulation of hexokinase binding to VDAC[J].J Bioenerg Biomembr,2008,40(3):171-182.DOI:10.1007/s10863-008-9148-8.
[12] Vassilopoulos A, Pennington JD, Andresson T,et al. SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress[J].Antioxid Redox Signal,2014,21(4):551-564. DOI:10.1089/ars.2013.5420.
[13] Satoh T. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes[J].Int J Mol Sci,2014,15(10):18677-18692. DOI:10.3390/ijms151018677.
[14] Befroy DE, Petersen KF, Dufour S,et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients[J].Diabetes,2007,56(5):1376-1381. DOI:10.2337/db06-0783.
[15] Jing E, O'Neill BT, Rardin MJ,et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation[J].Diabetes,2013,62(10):3404-3417.DOI:10.2337/db12-1650.
[16] Lombard DB, Alt FW, Cheng HL,et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation[J].Mol Cell Biol,2007,27(24):8807-8814. DOI:10.1128/MCB.01636-07.
[17] Chen Y, Zhang J, Lin Y,et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS[J].EMBO Rep,2011,12(6):534-541. DOI:10.1038/embor.2011.65.
[18] Kong X, Wang R, Xue Y,et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis[J].PLoS One,2010,5(7):e11707. DOI:10.1371/journal.pone.0011707.
[19] Liu G, Cao M, Xu Y,et al. SIRT3 protects endothelial cells from high glucose-induced cytotoxicity[J].Int J Clin Exp Pathol,2015,8(1):353-360.
[20] Xie Z, Zhang J, Wu J,et al. Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes[J].Diabetes,2008,57(12):3222-3230. DOI:10.2337/db08-0610.
[21] Qiu X, Brown K, Hirschey MD,et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation[J].Cell Metab,2010,12(6):662-667. DOI:10.1016/j.cmet.2010.11.015.
[22] Martin SD, McGee SL. The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes[J].Biochim Biophys Acta,2014,1840(4):1303-1312. DOI:10.1016/j.bbagen.2013.09.019.
[23] Zhang HH, Ma XJ, Wu LN,et al. SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells[J].Exp Biol Med(Maywood),2015,240(5):557-565. DOI:10.1177/1535370214557218.

相似文献/References:

[1]刘丹丹,王丽,史兴晔,等.脂肪酸受体GPR120影响胰岛素受体底物-1的表达[J].国际内分泌代谢杂志,2014,(06):371.[doi:10.3760/cma.j.issn.1673-4157.2014.06.003]
 Liu Dandan*,Wang Li,Shi Xingye,et al.Regulation of fatty acid receptor GPR120 on the expression of insulin receptor substrate-1[J].International Journal of Endocrinology and Metabolism,2014,(05):371.[doi:10.3760/cma.j.issn.1673-4157.2014.06.003]
[2]李新萍,张萍,李晓玉.螺内酯对特发性醛固酮增多症患者胰岛β细胞功能的影响[J].国际内分泌代谢杂志,2014,(06):379.[doi:10.3760/cma.j.issn.1673-4157.2014.06.005]
 Li Xinping,Zhang Ping,Li Xiaoyu..Effects of spironolactone on islet β cell function in patients with idiopathic hyperaldosteronism[J].International Journal of Endocrinology and Metabolism,2014,(05):379.[doi:10.3760/cma.j.issn.1673-4157.2014.06.005]
[3]胡雅琴,包玉倩.维生素D对非酒精性脂肪性肝病的保护作用[J].国际内分泌代谢杂志,2014,(06):408.[doi:10.3760/cma.j.issn.1673-4157.2014.06.013]
 Hu Yaqin,Bao Yuqian..Protective effect of vitamin D on non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):408.[doi:10.3760/cma.j.issn.1673-4157.2014.06.013]
[4]张琳,王晓琳,李小英.雄激素与糖脂代谢的关系[J].国际内分泌代谢杂志,2014,(05):351.[doi:10.3760/cma.j.issn.1673-4157.2014.05.018]
 Zhang Lin,Wang Xiaolin,Li Xiaoying..The relationship between testosterone and glycolipid,metabolism[J].International Journal of Endocrinology and Metabolism,2014,(05):351.[doi:10.3760/cma.j.issn.1673-4157.2014.05.018]
[5]梁绮君 余寿益 李淑华 胡晨鸣 杨焱.甲状腺结节与代谢综合征的相关性研究[J].国际内分泌代谢杂志,2015,(05):293.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.002]
 Liang Qijun,Yu Shouyi,Li Shuhua,et al.Association of thyroid nodule and metabolic syndrome[J].International Journal of Endocrinology and Metabolism,2015,(05):293.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.002]
[6]王锐 陆强 王术艺 朱东林 蒋韬 马宁 刘悦 李燕莉 贾晓娇 姚立新.血清25羟维生素D及vaspin水平与妊娠糖尿病关系的研究[J].国际内分泌代谢杂志,2015,(05):306.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.005]
 Wang Rui,Lu Qiang,Wang Shuyi,et al.Relationship between serum 25-hydroxyvitamin D, vaspin and gestational diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2015,(05):306.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.005]
[7]黄祺 程海燕 卜瑞芳.1-磷酸鞘胺醇与胰岛素抵抗[J].国际内分泌代谢杂志,2015,(05):348.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.015]
 Huang Qi,Cheng Haiyan,Bu Ruifang..Sphingosine-1-phosphate and insulin resistance[J].International Journal of Endocrinology and Metabolism,2015,(05):348.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.015]
[8]李少卿 王坚.2型糖尿病患者血25-羟维生素D3缺乏 对胰岛素抵抗及骨量的影响[J].国际内分泌代谢杂志,2015,(06):384.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.06.006]
 Li Shaoqing*,Wang Jian..The influence of 25-hydroxyl vitamin D3 deficiency on insulin resistance and bone mass in patients with type 2 diabetes[J].International Journal of Endocrinology and Metabolism,2015,(05):384.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.06.006]
[9]李晶,董荣娜,于德民.有氧运动对胰岛素抵抗小鼠visfatin 表达的影响[J].国际内分泌代谢杂志,2016,36(01):10.[doi:10.3760/cma.j.issn.1673-4157.2016.01.003]
 Li Jing,Dong Rongna,Yu Demin..Effects of aerobic exercise on the expression of visfatin in mice with insulin resistance[J].International Journal of Endocrinology and Metabolism,2016,36(05):10.[doi:10.3760/cma.j.issn.1673-4157.2016.01.003]
[10]张琳,费雯婕,宋光耀.网膜素与代谢综合征[J].国际内分泌代谢杂志,2016,36(01):42.[doi:10.3760/cma.j.issn.1673-4157.2016.01.010]
 Zhang Lin*,Fei Wenjie,Song Guangyao..Omentin and metabolic syndrome[J].International Journal of Endocrinology and Metabolism,2016,36(05):42.[doi:10.3760/cma.j.issn.1673-4157.2016.01.010]

备注/Memo

备注/Memo:
通信作者:宋光耀,Email:sguangyao2@163.com
更新日期/Last Update: 2017-09-30