[1]于菁 王秋月.富亮氨酸α-2糖蛋白-1与糖尿病血管并发症[J].国际内分泌代谢杂志,2019,39(06):387-390.[doi:10.3760/cma.j.issn.1673-4157.2019.06.006]
 Yu Jing,Wang Qiuyue.Leucine-rich alpha-2 glycoprotein-1 and diabetic vascular complications[J].International Journal of Endocrinology and Metabolism,2019,39(06):387-390.[doi:10.3760/cma.j.issn.1673-4157.2019.06.006]
点击复制

富亮氨酸α-2糖蛋白-1与糖尿病血管并发症()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
39
期数:
2019年06期
页码:
387-390
栏目:
综述
出版日期:
2019-11-20

文章信息/Info

Title:
Leucine-rich alpha-2 glycoprotein-1 and diabetic vascular complications
作者:
于菁1 王秋月2
1内蒙古医科大学附属医院血液科,呼和浩特 010050; 2中国医科大学附属第一医院内分泌科,沈阳 110001
Author(s):
Yu Jing1 Wang Qiuyue2
1Department of Hematology, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China; 2Department of Endocrinology, The First Hospital, China Medical University, Shenyang 110001, China
关键词:
富亮氨酸α-2糖蛋白-1 糖尿病 血管并发症
Keywords:
Leucine-rich alpha-2-glycoprotein-1 Diabetes mellitus Vascular complications
DOI:
10.3760/cma.j.issn.1673-4157.2019.06.006
摘要:
富亮氨酸α-2糖蛋白-1(LRG1)为富含亮氨酸重复序列蛋白家族重要的一员,其主要作用是通过调节体内转化生长因子-β(TGF-β)通路影响各种生物功能。近年来研究发现,LRG1与糖尿病血管并发症关系密切,不仅参与糖尿病肾病、糖尿病视网膜病变等微血管并发症的病理过程,而且参与周围血管疾病以及心、脑血管等糖尿病大血管并发症的发生、发展,为糖尿病微血管及大血管并发症的防治提供了新的方向及靶点。
Abstract:
Leucine-rich alpha-2-glycoprotein-1(LRG1)is an important member of the leucine-rich-alpha-2-glycoprotein family. Its main role is to influence various biological functions by regulating the transforming growth factor-β pathway. Recent studies have found that LRG1 is closely related to diabetic vascular complications. It not only participates in the pathological process of microvascular complications such as diabetic nephropathy and diabetic retinopathy, but also participates in the occurrence and development of diabetic macrovascular complications such as peripheral vascular diseases and cardiovascular and cerebrovascular diseases. It provides a new direction and target for the prevention and treatment of diabetic microvascular and macrovascular complications.

参考文献/References:

[1] Haupt H,Baudner S.Isolation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum(author's transl)[J].Hoppe Seylers Z Physiol Chem,1977,358(6):639-646.
[2] Takahashi N,Takahashi Y,Putnam FW.Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum[J].Proc Natl Acad Sci U S A,1985,82(7):1906-1910. DOI:10.1073/pnas.82.7.1906.
[3] Chen W,Zheng R,Baade PD,et al.Cancer statistics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132.DOI:10.3322/caac.21338.
[4] Wang X,Abraham S,McKenzie JAG,et al.LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling[J].Nature,2013,499(7458):306-311.DOI:10.1038/nature12345.
[5] Santibanez JF,Letamendia A,Perez-Barriocanal F,et al.Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-beta signaling[J].J Cell Physiol,2007,210(2):456-468.DOI:10.1002/jcp.20878.
[6] Hong Q,Zhang L,Fu J,et al.LRG1 promotes diabetic kidney disease progression by enhancing TGF-β-induced angiogenesis[J].J Am Soc Nephrol,2019,30(4):546-562.DOI:10.1681/ASN.2018060599.
[7] Liu JJ,Pek SLT,Ang K,et al.Plasma leucine-rich α-2-glycoprotein 1 predicts rapid eGFR decline and albuminuria progression in type 2 diabetes mellitus[J].J Clin Endocrinol Metab,2017,102(10):3683-3691.DOI:10.1210/jc.2017-00930.
[8] Singh H,Yu Y,Suh MJ,et al.Type 1 diabetes: urinary proteomics and protein network analysis support perturbation of lysosomal function[J].Theranostics,2017,7(10):2704-2717.DOI:10.7150/thno.19679.
[9] Haku S,Wakui H,Azushima K,et al.Early enhanced leucine-rich α-2-glycoprotein-1 expression in glomerular endothelial cells of type 2 diabetic nephropathy model mice[J].Biomed Res Int,2018,2018:2817045.DOI:10.1155/2018/2817045.
[10] Sifuentes-Franco S,Padilla-Tejeda DE,Carrillo-Ibarra S,et al.Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy[J].Int J Endocrinol,2018,2018:1875870.DOI:10.1155/2018/1875870.
[11] Sng MK,Chan JSK,Teo Z,et al.Selective deletion of PPARβ/δ in fibroblasts causes dermal fibrosis by attenuated LRG1 expression[J].Cell Discov,2018,4:15. DOI:10.1038/s41421-018-0014-5.
[12] Tanabe K,Maeshima Y,Sato Y,et al.Antiangiogenic therapy for diabetic nephropathy[J].Biomed Res Int,2017,2017:5724069.DOI:10.1155/2017/5724069.
[13] Kowluru RA,Zhong Q,Santos JM.Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9[J].Expert Opin Investig Drugs,2012,21(6):797-805.DOI:10.1517/13543784.2012.681043.
[14] Kang DH,Hughes J,Mazzali M,et al. Impaired angiogenesis in the remnant kidney model: Ⅱ. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function[J].J Am Soc Nephrol,2001,12(7):1448-1457.
[15] Kang DH,Kim YG,Andoh TF,et al.Post-cyclosporine-mediated hypertension and nephropathy: amelioration by vascular endothelial growth factor[J].Am J Physiol Renal Physiol,2001,280(4):F727-F736.DOI:10.1152/ajprenal.2001.280.4.F727.
[16] Fu J,Wei C,Zhang W,et al.Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice[J].Kidney Int,2018,94(2):326-345.DOI:10.1016/j.kint.2018.02.028.
[17] Vallon V,Thomson SC.Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney[J].Annu Rev Physiol,2012,74:351-375.DOI:10.1146/annurev-physiol-020911-153333.
[18] Lee H,Fujimoto M,Ohkawara T,et al.Leucine rich α-2 glycoprotein is a potential urinary biomarker for renal tubular injury[J].Biochem Biophys Res Commun,2018,498(4):1045-1051.DOI:10.1016/j.bbrc.2018.03.111.
[19] Zhang J,Zhu L,Fang J,et al.LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation[J].J Exp Clin Cancer Res,2016,35:29.DOI:10.1186/s13046-016-0306-2.
[20] Hase K,Kanda A,Hirose I,et al.Systemic factors related to soluble(pro)renin receptor in plasma of patients with proliferative diabetic retinopathy[J].PLoS One,2017,12(12):e0189696.DOI:10.1371/journal.pone.0189696.
[21] Chen C,Chen X,Huang H,et al.Elevated plasma and vitreous levels of leucine-rich-α2-glycoprotein are associated with diabetic retinopathy progression[J].Acta Ophthalmol,2019,97(3):260-264.DOI:10.1111/aos.13633.
[22] Pek SL,Tavintharan S,Wang X,et al.Elevation of a novel angiogenic factor, leucine-rich-α2-glycoprotein(LRG1), is associated with arterial stiffness, endothelial dysfunction, and peripheral arterial disease in patients with type 2 diabetes[J].J Clin Endocrinol Metab,2015,100(4):1586-1593.DOI:10.1210/jc.2014-3855.
[23] Shinzaki S,Matsuoka K,Iijima H,et al.Leucine-rich Alpha-2 glycoprotein is a serum biomarker of mucosal healing in ulcerative colitis[J].J Crohns Colitis,2017,11(1):84-91.DOI:10.1093/ecco-jcc/jjw132.
[24] Watson CJ,Ledwidge MT,Phelan D,et al.Proteomic analysis of coronary sinus serum reveals leucine-rich α2-glycoprotein as a novel biomarker of ventricular dysfunction and heart failure[J].Circ Heart Fail,2011,4(2):188-197.DOI:10.1161/CIRCHEARTFAILURE.110.952200.
[25] Bos S,Phillips M,Watts GF,et al.Novel protein biomarkers associated with coronary artery disease in statin-treated patients with familial hypercholesterolemia[J].J Clin Lipidol,2017,11(3):682-693.DOI:10.1016/j.jacl.2017.03.014.
[26] Kumagai S,Nakayama H,Fujimoto M,et al.Myeloid cell-derived LRG attenuates adverse cardiac remodelling after myocardial infarction[J].Cardiovasc Res,2016,109(2):272-282.DOI:10.1093/cvr/cvv273.
[27] Song W,Wang X.The role of TGFβ1 and LRG1 in cardiac remodelling and heart failure[J].Biophys Rev,2015,7(1):91-104. DOI:10.1007/s12551-014-0158-y.
[28] Meng H,Song Y,Zhu J,et al.LRG1 promotes angiogenesis through upregulating the TGFβ1 pathway in ischemic rat brain[J].Mol Med Rep,2016,14(6):5535-5543.DOI:10.3892/mmr.2016.5925.
[29] Cartier J,Piyasena C,Sparrow SA,et al.Alterations in glucose concentrations affect DNA methylation at Lrg1 in an ex vivo rat cortical slice model of preterm brain injury[J].Eur J Neurosci,2018,47(5):380-387.DOI:10.1111/ejn.13825.
[30] Amer R,Tiosano L,Pe'er J.Leucine-rich α-2-glycoprotein-1(LRG-1)expression in retinoblastoma[J].Invest Ophthalmol Vis Sci,2018,59(2):685-692.DOI:10.1167/iovs.17-22785.

相似文献/References:

[1]李春睿,王静,陈峰,等.GLP-1受体激动剂对糖尿病患者肾功能的影响[J].国际内分泌代谢杂志,2014,(06):401.[doi:10.3760/cma.j.issn.1673-4157.2014.06.011]
 Li Chunrui*,Wang Jing,Chen Feng,et al.Effects of GLP-1 receptor agonists on renal function of diabetics[J].International Journal of Endocrinology and Metabolism,2014,(06):401.[doi:10.3760/cma.j.issn.1673-4157.2014.06.011]
[2]黄珊珊,鲁一兵.长链非编码RNA与糖尿病[J].国际内分泌代谢杂志,2015,(04):271.[doi:10.3760/cma.j.issn.1673-4157.2015.04.016]
 Huang Shanshan*,Lu Yibing..Long non-coding RNA and diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2015,(06):271.[doi:10.3760/cma.j.issn.1673-4157.2015.04.016]
[3]高瑞霄,姚朱华,冯凭,等.尿8-羟基脱氧鸟苷在2型糖尿病及糖尿病合并冠心病患者中的临床意义[J].国际内分泌代谢杂志,2014,(05):295.[doi:10.3760/cma.j.issn.1673-4157.2014.05.002]
 Gao Ruixiao*,Yao Zhuhua,Feng Ping,et al.The clinical significance of urinary 8-hydroxy deoxyguanosine in patients with type 2 diabetes mellitus and diabetic patients with coronary heart disease[J].International Journal of Endocrinology and Metabolism,2014,(06):295.[doi:10.3760/cma.j.issn.1673-4157.2014.05.002]
[4]郑佳,肖新华.葡萄糖稳态的中枢调控作用机制 ——2014年美国糖尿病协会“杰出科学成就奖” 演讲报告解读[J].国际内分泌代谢杂志,2014,(05):305.[doi:10.3760/cma.j.issn.1673-4157.2014.05.004]
 Zheng Jia,Xiao Xinhua.The mechanisms of central nervous system in the control of glucose homeostasis--A summary of 2014 ADA "Outstanding Scientific Achievement Award" Lecture[J].International Journal of Endocrinology and Metabolism,2014,(06):305.[doi:10.3760/cma.j.issn.1673-4157.2014.05.004]
[5]唐勤,邵莉.蛋白乙酰化与胰岛素分泌[J].国际内分泌代谢杂志,2014,(05):313.[doi:10.3760/cma.j.issn.1673-4157.2014.05.007]
 Tang Qin,Shao Li..Protein acetylation and insulin secretion[J].International Journal of Endocrinology and Metabolism,2014,(06):313.[doi:10.3760/cma.j.issn.1673-4157.2014.05.007]
[6]卢婷婷,任思佳,沈捷.人群迁徙对糖尿病患病率的影响及其相关因素[J].国际内分泌代谢杂志,2014,(05):327.[doi:10.3760/cma.j.issn.1673-4157.2014.05.011]
 Lu Tingting,Ren Sijia,Shen Jie..Impact of migration on prevalence of diabetes and risk factors[J].International Journal of Endocrinology and Metabolism,2014,(06):327.[doi:10.3760/cma.j.issn.1673-4157.2014.05.011]
[7]包薇萍,陈国芳,刘超.DPP-4抑制剂的肾保护作用[J].国际内分泌代谢杂志,2014,(05):337.[doi:10.3760/cma.j.issn.1673-4157.2014.05.014]
 Bao Weiping,Chen Guofang,Liu Chao..Renal protective effects of dipeptidyl peptidase-4 inhibitors[J].International Journal of Endocrinology and Metabolism,2014,(06):337.[doi:10.3760/cma.j.issn.1673-4157.2014.05.014]
[8]孟庆冬,陶红.巨噬细胞凋亡与糖尿病动脉粥样硬化[J].国际内分泌代谢杂志,2014,(05):340.[doi:10.3760/cma.j.issn.1673-4157.2014.05.015]
 Meng Qingdong,Tao Hong..Macrophage apoptosis and diabetic atherosclerosis[J].International Journal of Endocrinology and Metabolism,2014,(06):340.[doi:10.3760/cma.j.issn.1673-4157.2014.05.015]
[9]赵荷珺 洪天配.胰高血糖素样肽-1类药物与胰腺安全性[J].国际内分泌代谢杂志,2015,(05):319.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.008]
 Zhao Hejun*,Hong Tianpei..Glucagon-like peptide-1-based therapies and pancreatic safety[J].International Journal of Endocrinology and Metabolism,2015,(06):319.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.008]
[10]吕丹 李晓思 陈树春 王泽普.Betatrophin:糖尿病再生治疗的新希望[J].国际内分泌代谢杂志,2015,(05):351.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.016]
 Lyu Dan*,Li Xiaosi,Chen Shuchun,et al.Betatrophin:new hope for regeneration therapy of diabetes[J].International Journal of Endocrinology and Metabolism,2015,(06):351.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.016]

备注/Memo

备注/Memo:
通信作者:王秋月,Email:wqycmu123@163.com
Corresponding author: Wang Qiuyue, Email:wqycmu123@163.com
基金项目:内蒙古医科大学青年创新基金(YKD2017QNCX066)
更新日期/Last Update: 2019-11-20