[1]胡佳腾 宗茜 甘雨洁 刁柯彤 瞿天宇 徐怿琳 孙敏.4-苯基丁酸在糖尿病及其并发症防治中的作用[J].国际内分泌代谢杂志,2019,39(06):383-386.[doi:10.3760/cma.j.issn.1673-4157.2019.06.005]
 Hu Jiateng,Zong Xi,Gan Yujie,et al.The role of 4-phenylbutyric acid in prevention and control of diabetes and its complications[J].International Journal of Endocrinology and Metabolism,2019,39(06):383-386.[doi:10.3760/cma.j.issn.1673-4157.2019.06.005]
点击复制

4-苯基丁酸在糖尿病及其并发症防治中的作用()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
39
期数:
2019年06期
页码:
383-386
栏目:
综述
出版日期:
2019-11-20

文章信息/Info

Title:
The role of 4-phenylbutyric acid in prevention and control of diabetes and its complications
作者:
胡佳腾1 宗茜1 甘雨洁1 刁柯彤1 瞿天宇1 徐怿琳2 孙敏3
1南京医科大学(江宁校区)211100; 2苏州大学附属第二人民医院肾内科 215000; 3南京医科大学第一附属医院(江苏省人民医院)内分泌科 210029
Author(s):
Hu Jiateng1 Zong Xi1 Gan Yujie1 Diao Ketong1 Qu Tianyu1 Xu Yilin2 Sun Min3
1First Clinical Medical College of Nanjing Medical University, Nanjing 211100, China; 2Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou 215008, China; 3Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
关键词:
4-苯基丁酸 糖尿病 糖尿病并发症 内质网应激
Keywords:
4-phenybutyric acid Diabetes mellitus Diabetic complications Endoplasmic reticulum stress
DOI:
10.3760/cma.j.issn.1673-4157.2019.06.005
摘要:
4-苯基丁酸(4-PBA)是分子伴侣的一种,具有防止内质网中蛋白质错误折叠的功能。近来研究发现,内质网应激(ERS)与糖尿病及其并发症关系密切。4-PBA可通过CCAAT/增强子结合蛋白同源蛋白通路,改善ERS导致的胰岛细胞凋亡、胰岛素抵抗和胰岛素分泌,进而参与糖尿病及其并发症的发生、发展。
Abstract:
4-phenylbutyric acid(4-PBA)is a kind of molecular chaperone that has been shown to have the function of preventing proteins from misfolding. Recent researches had illustrated that endoplasmic reticulum stress(ERS)was closely relevant with diabetes and its complications. Besides, 4-PBA contributes to improving islet cell apoptosis, insulin resistance and insulin secretion caused by ERS through CCAAT/enhancer binding protein homologous protein signal pathway.

参考文献/References:

[1] Sun J,Cui J,He Q,et al.Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes[J].Mol Aspects Med,2015,42:105-118.DOI:10.1016/j.mam.2015.01.001.
[2] Zode GS,Sharma AB,Lin X,et al.Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma[J].J Clin Invest,2014,124(5):1956-1965.DOI:10.1172/JCI69774.
[3] Saito K,Davis KC,Morgan DA,et al.Celastrol reduces obesity in MC4R deficiency and stimulates sympathetic nerve activity affecting metabolic and cardiovascular functions[J].Diabetes,2019,68(6):1210-1220.DOI:10.2337/db18-1167.
[4] Dai F,Lee H,Zhang Y,et al.BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response[J].Proc Natl Acad Sci U S A,2017,114(12):3192-3197.DOI:10.1073/pnas.1619588114.
[5] Escribano-Lopez I,Bañuls C,Diaz-Morales N,et al.The mitochondria-targeted antioxidant mitoQ modulates mitochondrial function and endoplasmic reticulum stress in pancreatic β cells exposed to hyperglycaemia[J].Cell Physiol Biochem,2019,52(2):186-197.DOI:10.33594/000000013.
[6] Zhou MF,Feng ZP,Ou YC,et al.Endoplasmic reticulum stress induces apoptosis of arginine vasopressin neurons in central diabetes insipidus via PI3K/Akt pathway[J].CNS Neurosci Ther,2019,25(5):562-574.DOI:10.1111/cns.13089.
[7] Ingelfinger JR,Rosen CJ.Cardiac and renovascular complications in type 2 diabetes--is there hope?[J].N Engl J Med,2016,375(4):380-382.DOI:10.1056/NEJMe1607413.
[8] Halban PA,Polonsky KS,Bowden DW,et al.β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment[J].Diabetes Care,2014,37(6):1751-1758.DOI:10.2337/dc14-0396.
[9] Li H,O'Meara M,Zhang X,et al.Ameliorating methylglyoxal-induced progenitor cell dysfunction for tissue repair in diabetes[J].Diabetes,2019,68(6):1287-1302.DOI:10.2337/db18-0933.
[10] Liu C,Huang Y,Zhang Y,et al.Intracellular methylglyoxal induces oxidative damage to pancreatic beta cell line INS-1 cell through Ire1α-JNK and mitochondrial apoptotic pathway[J].Free Radic Res,2017,51(4):337-350.DOI:10.1080/10715762.2017.1289376.
[11] Mohammed-Ali Z,Cruz GL,Dickhout JG.Crosstalk between the unfolded protein response and NF-κB-mediated inflammation in the progression of chronic kidney disease[J].J Immunol Res,2015,2015:428508.DOI:10.1155/2015/428508.
[12] Jo S,Fonseca TL,Bocco BMLC,et al.Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain[J].J Clin Invest,2019,129(1):230-245.DOI:10.1172/JCI123176.
[13] 杨燕丽,向若兰,孙琦,等. 4-PBA抗糖尿病大鼠内质网应激作用及机制[J].基础医学与临床,2016,36(6):728-733.
[14] Zhu M,Guo M,Fei L,et al.4-phenylbutyric acid attenuates endoplasmic reticulum stress-mediated pancreatic β-cell apoptosis in rats with streptozotocin-induced diabetes[J].Endocrine,2014,47(1):129-137.DOI:10.1007/s12020-013-0132-7.
[15] Yi H,Gu C,Li M,et al.PERK/eIF2α contributes to changes of insulin signaling in HepG2 cell induced by intermittent hypoxia[J].Life Sci,2017,181:17-22.DOI:10.1016/j.lfs.2017.04.022.
[16] Luo T,Chen B,Wang X.4-PBA prevents pressure overload-induced myocardial hypertrophy and interstitial fibrosis by attenuating endoplasmic reticulum stress[J].Chem Biol Interact,2015,242:99-106.DOI:10.1016/j.cbi.2015.09.025.
[17] Guo H,Xiong Y,Witkowski P,et al.Inefficient translocation of preproinsulin contributes to pancreatic β cell failure and late-onset diabetes[J].J Biol Chem,2014,289(23):16290-16302.DOI:10.1074/jbc.M114.562355.
[18] Haataja L,Manickam N,Soliman A,et al.Disulfide mispairing during proinsulin folding in the endoplasmic reticulum[J].Diabetes,2016,65(4):1050-1060.DOI:10.2337/db15-1345.
[19] He Z,Zou S,Yin J,et al.Inhibition of endoplasmic reticulum stress preserves the integrity of blood-spinal cord barrier in diabetic rats subjected to spinal cord injury[J].Sci Rep,2017,7(1):7661.DOI:10.1038/s41598-017-08052-4.
[20] Park JH,Shim HM,Na AY,et al.Melatonin prevents pancreatic β-cell loss due to glucotoxicity: the relationship between oxidative stress and endoplasmic reticulum stress[J].J Pineal Res,2014,56(2):143-153.DOI:10.1111/jpi.12106.
[21] Li H,Zhou B,Liu J,et al.Administration of progranulin(PGRN)triggers ER stress and impairs insulin sensitivity via PERK-eIF2α-dependent manner[J].Cell Cycle,2015,14(12):1893-1907.DOI:10.1080/15384101.2015.1041686.
[22] Jung TW,Lee SY,Hong HC,et al.AMPK activator-mediated inhibition of endoplasmic reticulum stress ameliorates carrageenan-induced insulin resistance through the suppression of selenoprotein P in HepG2 hepatocytes[J].Mol Cell Endocrinol,2014,382(1):66-73.DOI:10.1016/j.mce.2013.09.013.
[23] 李凌海,陈燕,王春,等. 4-苯基丁酸钠缓解大鼠开胸手术后胰岛素抵抗[J]. 国际麻醉学与复苏杂志,2018,39(5):410-413.DOI:10.3760/cma.j.issn.1673-4378.2018.05.006.
[24] Kong FJ,Wu JH,Sun SY,et al.The endoplasmic reticulum stress/autophagy pathway is involved in cholesterol-induced pancreatic β-cell injury[J].Sci Rep,2017,7:44746.DOI:10.1038/srep44746.
[25] Guan G,Lei L,Lv Q,et al.Curcumin attenuates palmitic acid-induced cell apoptosis by inhibiting endoplasmic reticulum stress in H9C2 cardiomyocytes[J].Hum Exp Toxicol,2019,38(6):655-664.DOI:10.1177/0960327119836222.
[26] Kawasaki N,Asada R,Saito A,et al.Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue[J].Sci Rep,2012,2:799.DOI:10.1038/srep00799.
[27] Marwarha G,Claycombe K,Schommer J,et al.Palmitate-induced endoplasmic reticulum stress and subsequent C/EBPα homologous protein activation attenuates leptin and insulin-like growth factor 1 expression in the brain[J].Cell Signal,2016,28(11):1789-1805.DOI:10.1016/j.cellsig.2016.08.012.
[28] Xiu F,Diao L,Qi P,et al.Palmitate differentially regulates the polarization of differentiating and differentiated macrophages[J].Immunology,2016,147(1):82-96.DOI:10.1111/imm.12543.
[29] Liong S,Lappas M.Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes[J].PLoS One,2015,10(4):e0122633.DOI:10.1371/journal.pone.0122633.
[30] Yung HW,Alnæs-Katjavivi P,Jones CJ,et al.Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants[J].Diabetologia,2016,59(10):2240-2250. DOI:10.1007/s00125-016-4040-2.
[31] Cao AL,Wang L,Chen X,et al.Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy[J].Lab Invest,2016,96(6):610-622.DOI:10.1038/labinvest.2016.44.
[32] Pang XX,Bai Q,Wu F,et al.Urotensin Ⅱ induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice[J].Kidney Blood Press Res,2016,41(4):434-449.DOI:10.1159/000443445.
[33] Zhang YW,Wang X,Ren X,et al.Involvement of glucose-regulated protein 78 and spliced X-box binding protein 1 in the protective effect of gliclazide in diabetic nephropathy[J].Diabetes Res Clin Pract,2018,146:41-47.DOI:10.1016/j.diabres.2017.04.019.
[34] Bailey KA,Haj FG,Simon SI,et al.Atherosusceptible shear stress activates endoplasmic reticulum stress to promote endothelial inflammation[J].Sci Rep,2017,7(1):8196.DOI:10.1038/s41598-017-08417-9.
[35] Yu W,Liu X,Feng L,et al.Glycation of paraoxonase 1 by high glucose instigates endoplasmic reticulum stress to induce endothelial dysfunction in vivo[J].Sci Rep,2017,7:45827.DOI:10.1038/srep45827.
[36] Guo R,Wu Z,Jiang J,et al.New mechanism of lipotoxicity in diabetic cardiomyopathy: deficiency of endogenous H2S production and ER stress[J].Mech Ageing Dev,2017,162:46-52.DOI:10.1016/j.mad.2016.11.005.
[37] Takada A,Miki T,Kuno A,et al.Role of ER stress in ventricular contractile dysfunction in type 2 diabetes[J].PLoS One,2012,7(6):e39893.DOI:10.1371/journal.pone.0039893.
[38] Wang Z,Huang Y,Cheng Y,et al.Endoplasmic reticulum stress-induced neuronal inflammatory response and apoptosis likely plays a key role in the development of diabetic encephalopathy[J].Oncotarget,2016,7(48):78455-78472.DOI:10.18632/oncotarget.12925.
[39] Shruthi K,Reddy SS,Chitra PS,et al.Ubiquitin-proteasome system and ER stress in the brain of diabetic rats[J].J Cell Biochem,2019,120(4):5962-5973.DOI:10.1002/jcb.27884.
[40] Wu M,Yang S,Elliott MH,et al.Oxidative and endoplasmic reticulum stresses mediate apoptosis induced by modified LDL in human retinal Müller cells[J].Invest Ophthalmol Vis Sci,2012,53(8):4595-4604.DOI:10.1167/iovs.12-9910.
[41] Zhou H,Liu R.ER stress and hepatic lipid metabolism[J].Front Genet,2014,5:112.DOI:10.3389/fgene.2014.00112.

相似文献/References:

[1]李春睿,王静,陈峰,等.GLP-1受体激动剂对糖尿病患者肾功能的影响[J].国际内分泌代谢杂志,2014,(06):401.[doi:10.3760/cma.j.issn.1673-4157.2014.06.011]
 Li Chunrui*,Wang Jing,Chen Feng,et al.Effects of GLP-1 receptor agonists on renal function of diabetics[J].International Journal of Endocrinology and Metabolism,2014,(06):401.[doi:10.3760/cma.j.issn.1673-4157.2014.06.011]
[2]黄珊珊,鲁一兵.长链非编码RNA与糖尿病[J].国际内分泌代谢杂志,2015,(04):271.[doi:10.3760/cma.j.issn.1673-4157.2015.04.016]
 Huang Shanshan*,Lu Yibing..Long non-coding RNA and diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2015,(06):271.[doi:10.3760/cma.j.issn.1673-4157.2015.04.016]
[3]高瑞霄,姚朱华,冯凭,等.尿8-羟基脱氧鸟苷在2型糖尿病及糖尿病合并冠心病患者中的临床意义[J].国际内分泌代谢杂志,2014,(05):295.[doi:10.3760/cma.j.issn.1673-4157.2014.05.002]
 Gao Ruixiao*,Yao Zhuhua,Feng Ping,et al.The clinical significance of urinary 8-hydroxy deoxyguanosine in patients with type 2 diabetes mellitus and diabetic patients with coronary heart disease[J].International Journal of Endocrinology and Metabolism,2014,(06):295.[doi:10.3760/cma.j.issn.1673-4157.2014.05.002]
[4]郑佳,肖新华.葡萄糖稳态的中枢调控作用机制 ——2014年美国糖尿病协会“杰出科学成就奖” 演讲报告解读[J].国际内分泌代谢杂志,2014,(05):305.[doi:10.3760/cma.j.issn.1673-4157.2014.05.004]
 Zheng Jia,Xiao Xinhua.The mechanisms of central nervous system in the control of glucose homeostasis--A summary of 2014 ADA "Outstanding Scientific Achievement Award" Lecture[J].International Journal of Endocrinology and Metabolism,2014,(06):305.[doi:10.3760/cma.j.issn.1673-4157.2014.05.004]
[5]唐勤,邵莉.蛋白乙酰化与胰岛素分泌[J].国际内分泌代谢杂志,2014,(05):313.[doi:10.3760/cma.j.issn.1673-4157.2014.05.007]
 Tang Qin,Shao Li..Protein acetylation and insulin secretion[J].International Journal of Endocrinology and Metabolism,2014,(06):313.[doi:10.3760/cma.j.issn.1673-4157.2014.05.007]
[6]卢婷婷,任思佳,沈捷.人群迁徙对糖尿病患病率的影响及其相关因素[J].国际内分泌代谢杂志,2014,(05):327.[doi:10.3760/cma.j.issn.1673-4157.2014.05.011]
 Lu Tingting,Ren Sijia,Shen Jie..Impact of migration on prevalence of diabetes and risk factors[J].International Journal of Endocrinology and Metabolism,2014,(06):327.[doi:10.3760/cma.j.issn.1673-4157.2014.05.011]
[7]包薇萍,陈国芳,刘超.DPP-4抑制剂的肾保护作用[J].国际内分泌代谢杂志,2014,(05):337.[doi:10.3760/cma.j.issn.1673-4157.2014.05.014]
 Bao Weiping,Chen Guofang,Liu Chao..Renal protective effects of dipeptidyl peptidase-4 inhibitors[J].International Journal of Endocrinology and Metabolism,2014,(06):337.[doi:10.3760/cma.j.issn.1673-4157.2014.05.014]
[8]孟庆冬,陶红.巨噬细胞凋亡与糖尿病动脉粥样硬化[J].国际内分泌代谢杂志,2014,(05):340.[doi:10.3760/cma.j.issn.1673-4157.2014.05.015]
 Meng Qingdong,Tao Hong..Macrophage apoptosis and diabetic atherosclerosis[J].International Journal of Endocrinology and Metabolism,2014,(06):340.[doi:10.3760/cma.j.issn.1673-4157.2014.05.015]
[9]赵荷珺 洪天配.胰高血糖素样肽-1类药物与胰腺安全性[J].国际内分泌代谢杂志,2015,(05):319.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.008]
 Zhao Hejun*,Hong Tianpei..Glucagon-like peptide-1-based therapies and pancreatic safety[J].International Journal of Endocrinology and Metabolism,2015,(06):319.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.008]
[10]吕丹 李晓思 陈树春 王泽普.Betatrophin:糖尿病再生治疗的新希望[J].国际内分泌代谢杂志,2015,(05):351.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.016]
 Lyu Dan*,Li Xiaosi,Chen Shuchun,et al.Betatrophin:new hope for regeneration therapy of diabetes[J].International Journal of Endocrinology and Metabolism,2015,(06):351.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.016]

备注/Memo

备注/Memo:
通信作者:孙敏,Email:drsunm@163.com
Corresponding author: Sun Min, Email:drsunm@163.com
Corresponding author: Sun Min, Email:drsunm@163.com
基金项目:“国家重点研发计划资助”项目(2016YFC0901200,2016YFC0901205)
Fund program:The Ministry of Science and Technology(2016YFC0901200, 2016YFC0901205)
更新日期/Last Update: 2019-11-20