[1]姜爱君 彭爽 李倩.胰腺细胞的再生方法及相关机制[J].国际内分泌代谢杂志,2020,40(02):108-112.[doi:10.3760/cma.j.issn.1673-4157.2020.02.009]
 Jiang Aijun,Peng Shuang,Li Qian.Regeneration methods and related mechanisms of pancreatic cells[J].International Journal of Endocrinology and Metabolism,2020,40(02):108-112.[doi:10.3760/cma.j.issn.1673-4157.2020.02.009]
点击复制

胰腺细胞的再生方法及相关机制()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
40
期数:
2020年02期
页码:
108-112
栏目:
基础研究
出版日期:
2020-03-20

文章信息/Info

Title:
Regeneration methods and related mechanisms of pancreatic cells
作者:
姜爱君 彭爽 李倩
南京医科大学附属南京医院内分泌科 210006
Author(s):
Jiang Aijun Peng Shuang Li Qian
Department of Endocrinology, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing 210006, China
关键词:
再生 糖尿病 治疗 β细胞 胰岛细胞
Keywords:
Regeneration Diabetes mellitus Treatment β cells Pancreatic cells
DOI:
10.3760/cma.j.issn.1673-4157.2020.02.009
摘要:
人体的细胞和器官具有较强的再生能力,作为重要的消化器官和多种代谢性激素合成的核心器官,胰腺在出生后再生能力明显不足。轻度急性胰腺炎或部分胰腺切除的患者都可通过促进存活的胰腺外分泌腺泡细胞再生而完全康复。胰岛β细胞数量相对或绝对减少引起的糖尿病,可通过刺激β细胞再生进行治疗。这些方法主要包括促进β细胞自身增殖和α细胞、δ细胞、胰腺导管上皮细胞、腺泡细胞以及其他消化腺细胞等细胞的转分化。通过不同的生物因子相关信号通路来调节β细胞的再生,从而恢复胰岛细胞功能,逆转或者延缓糖尿病的发生、发展,可为糖尿病的治疗提供新思路。
Abstract:
Human cells and organs have a strong ability to regenerate. As an important digestive organ and a core organ for the synthesis of a variety of metabolic hormones, the pancreas has a significant lack of regeneration capacity after birth. Patients with mild acute pancreatitis or partial pancreatectomy can fully recover by promoting the regeneration of surviving pancreatic exocrine acinar cells. Diabetes caused by a relative or absolute decrease in the number of islet β cells can be treated by stimulating the regeneration of β cells. These methods mainly promote the proliferation of β cells themselves and the transdifferentiation of cells such as α cells, δ cells, pancreatic ductal epithelial cells, acinar cells, and other digestive gland cells.The regeneration of β cells can be regulated by different biological factor-related signaling pathways, so as to restore the function of islet cells and reverse or delay the occurrence and development of diabetes, which provides a new idea for the treatment of diabetes.

参考文献/References:

[1] Vlasov AP,Zaitsev PP,Vlasova TI,et al.Restoration of tissue reparative ability during acute pancreatitis(in Russian only)[J].Khirurgiia(Mosk),2019,(3):73-79. DOI: 10.17116/hirurgia201903173.
[2] Barlass U,Dutta R,Cheema H,et al.Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis[J].Gut,2018,67(4):600-602.DOI:10.1136/gutjnl-2017-313717.
[3] Bombardo M,Malagola E,Chen R,et al.Ibuprofen and diclofenac treatments reduce proliferation of pancreatic acinar cells upon inflammatory injury and mitogenic stimulation[J].Br J Pharmacol,2018,175(2):335-347.DOI:10.1111/bph.13867.
[4] Yang N,Li B,Pan Y,et al.Hypertriglyceridaemia delays pancreatic regeneration after acute pancreatitis in mice and patients[J].Gut,2019,68(2):378-380.DOI:10.1136/gutjnl-2017-315560.
[5] Pan LF,Yu L,Wang LM,et al.Augmenter of liver regeneration(ALR)regulates acute pancreatitis via inhibiting HMGB1/TLR4/NF-κB signaling pathway[J].Am J Transl Res,2018,10(2):402-410.
[6] Chan LK,Gerstenlauer M,Konukiewitz B,et al.Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis[J].Gut,2017,66(11):1995-2007.DOI: 10.1136/gutjnl-2015-311028.
[7] Das KK,Heeg S,Pitarresi JR,et al. ETV5 regulates ductal morphogenesis with Sox9 and is critical for regeneration from pancreatitis[J].Dev Dyn,2018,247(6):854-866.DOI:10.1002/dvdy.24626.
[8] Schmitner N,Kohno K, Meyer D. ptf1a+, ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae[J].Dis Model Mech,2017,10(3):307-321.DOI:10.1242/dmm.026633.
[9] Hering BJ,Clarke WR,Bridges ND,et al.Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia[J].Diabetes Care,2016,39(7):1230-1240.DOI:10.2337/dc15-1988.
[10] Cai EP,Luk CT, Wu X,et al. Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action[J].Diabetologia,2014,57(12):2555-2565.DOI:10.1007/s00125-014-3381-y.
[11] Zhao X,Xu Y,Wu Y,et al.Involvement of the STAT5-cyclin D/CDK4-pRb pathway in β-cell proliferation stimulated by prolactin during pregnancy[J].Am J Physiol Endocrinol Metab,2019,316(1):E135-E144.DOI:10.1152/ajpendo.00242.2018.
[12] Shirakawa J,Terauchi Y.Glucose- or insulin resistance-mediated β-cell replication: PKCζ integrates the proliferative signaling[J].Send to J Diabetes Investig,2017,8(2):149-151.DOI:10.1111/jdi.12558.
[13] Lakshmipathi J,Alvarez-Perez JC,Rosselot C,et al.PKCζ is essential for pancreatic β-cell replication during insulin resistance by regulating mTOR and cyclin-D2[J].Diabetes,2016,65(5):1283-1296.DOI:10.2337/db15-1398.
[14] Wang P,Karakose E,Liu H,et al.Combined inhibition of DYRK1A, SMAD, and trithorax pathways synergizes to induce robust replication in adult human beta cells[J].Cell Metab,2019,29(3):638-652.e5. DOI:10.1016/j.cmet.2018.12.005.
[15] Abdolazimi Y,Zhao Z,Lee S,et al. CC-401 promotes β-cell replication via pleiotropic consequences of DYRK1A/B inhibition[J].Endocrinology,2018,159(9):3143-3157.DOI:10.1210/en.2018-00083.
[16] Shen W,Taylor B,Jin Q,et al.Inhibition of DYRK1A and GSK3B induces human β-cell proliferation[J].Nat Commun,2015,6:8372.DOI:10.1038/ncomms9372.
[17] Dirice E,Walpita D,Vetere A,et al.Inhibition of DYRK1A stimulates human β-cell proliferation[J].Diabetes,2016,65(6):1660-1671.DOI:10.2337/db15-1127.
[18] Dai C,Hang Y,Shostak A,et al. Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurinsignaling[J].J Clin Invest,2017,127(10):3835-3844.DOI:10.1172/JCI91761.
[19] Hakonen E,Chandra V,Fogarty CL,et al. MANF protects human pancreatic beta cells against stress-induced cell death[J].Diabetologia,2018,61(10):2202-2214.DOI:10.1007/s00125-018-4687-y.
[20] Damsteegt EL,Hassan Z,Hewawasam NV,et al. A novel role for somatostatin in the survival of mouse pancreatic beta cells[J].Cell Physiol Biochem,2019,52(3):486-502.DOI:10.33594/000000035.
[21] Ueberberg S,Tannapfel A,Schenker P,et al.Differential expression of cell-cycle regulators in human beta-cells derived from insulinoma tissue[J].Metabolism,2016,65(5):736-746.DOI:10.1016/j.metabol.2016.02.007.
[22] Furuyama K,Chera S,van Gurp L,et al.Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells[J].Nature,2019,567(7746):43-48.DOI:10.1038/s41586-019-0942-8.
[23] Lee YS,Lee C,Choung JS,et al.Glucagon-like peptide 1 increases β-cell regeneration by promoting α- to β-cell transdifferentiation[J].Diabetes,2018,67(12):2601-2614. DOI:10.2337/db18-0155.
[24] Wei R,Gu L,Yang J,et al.Antagonistic glucagon receptor antibody promotes α-cell proliferation and increases β-cell mass in diabetic mice[J].iScience,2019,16:326-339. DOI:10.1016/j.isci.2019.05.030.
[25] Chera S,Baronnier D,Ghila L,et al.Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers[J].Nature,2014,514(7523):503-507.DOI:10.1038/nature13633.
[26] Cavelti-Weder C,Li W,Zumsteg A,et al.Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice[J].Diabetologia,2016,59(3):522-532.DOI:10.1007/s00125-015-3838-7.
[27] Zhang M,Lin Q,Qi T,et al. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes[J].Proc Natl Acad Sci U S A,2016,113(3):650-655.DOI:10.1073/pnas.1524200113.
[28] Mfopou JK,Houbracken I,Wauters E,et al.Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis[J].Biosci Rep,2016,36(3).pii:e00329.DOI:10.1042/BSR20150259.
[29] Klein D, lvarez-Cubela S,Lanzoni G,et al.BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion[J].Diabetes,2015,64(12):4123-4134.DOI:10.2337/db15-0688.
[30] Lee SH,Rhee M,Kim JW,et al.Generation of insulin-expressing cells in mouse small intestine by Pdx1, MafA, and BETA2/NeuroD[J].Diabetes Metab J,2017,41(5):405-416.DOI:10.4093/dmj.2017.41.5.405.
[31] Srivastava S,Pandey H,Singh SK,et al. GLP 1 regulated intestinal cell's insulin expression and selfadaptation before the onset of type 2 diabetes[J].Adv Pharm Bull,2019,9(2):325-330. DOI:10.15171/apb.2019.039.
[32] Meivar-Levy I,Zoabi F,Nardini G,et al.The role of the vasculature niche on insulin-producing cells generated by transdifferentiation of adult human liver cells[J].Stem Cell Res Ther,2019,10(1):53. DOI:10.1186/s13287-019-1157-5.

相似文献/References:

[1]李春睿,王静,陈峰,等.GLP-1受体激动剂对糖尿病患者肾功能的影响[J].国际内分泌代谢杂志,2014,(06):401.[doi:10.3760/cma.j.issn.1673-4157.2014.06.011]
 Li Chunrui*,Wang Jing,Chen Feng,et al.Effects of GLP-1 receptor agonists on renal function of diabetics[J].International Journal of Endocrinology and Metabolism,2014,(02):401.[doi:10.3760/cma.j.issn.1673-4157.2014.06.011]
[2]曹书义,袁莉.胰腺上皮细胞可能成为胰岛β细胞再生的新来源[J].国际内分泌代谢杂志,2015,(02):114.[doi:10.3760/cma.j.issn.1673-4157.2015.02.011]
 Cao Shuyi,Yuan Li..Pancreatic epithelium may be a new source of islet β cells regeneration[J].International Journal of Endocrinology and Metabolism,2015,(02):114.[doi:10.3760/cma.j.issn.1673-4157.2015.02.011]
[3]黄珊珊,鲁一兵.长链非编码RNA与糖尿病[J].国际内分泌代谢杂志,2015,(04):271.[doi:10.3760/cma.j.issn.1673-4157.2015.04.016]
 Huang Shanshan*,Lu Yibing..Long non-coding RNA and diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2015,(02):271.[doi:10.3760/cma.j.issn.1673-4157.2015.04.016]
[4]高瑞霄,姚朱华,冯凭,等.尿8-羟基脱氧鸟苷在2型糖尿病及糖尿病合并冠心病患者中的临床意义[J].国际内分泌代谢杂志,2014,(05):295.[doi:10.3760/cma.j.issn.1673-4157.2014.05.002]
 Gao Ruixiao*,Yao Zhuhua,Feng Ping,et al.The clinical significance of urinary 8-hydroxy deoxyguanosine in patients with type 2 diabetes mellitus and diabetic patients with coronary heart disease[J].International Journal of Endocrinology and Metabolism,2014,(02):295.[doi:10.3760/cma.j.issn.1673-4157.2014.05.002]
[5]郑佳,肖新华.葡萄糖稳态的中枢调控作用机制 ——2014年美国糖尿病协会“杰出科学成就奖” 演讲报告解读[J].国际内分泌代谢杂志,2014,(05):305.[doi:10.3760/cma.j.issn.1673-4157.2014.05.004]
 Zheng Jia,Xiao Xinhua.The mechanisms of central nervous system in the control of glucose homeostasis--A summary of 2014 ADA "Outstanding Scientific Achievement Award" Lecture[J].International Journal of Endocrinology and Metabolism,2014,(02):305.[doi:10.3760/cma.j.issn.1673-4157.2014.05.004]
[6]唐勤,邵莉.蛋白乙酰化与胰岛素分泌[J].国际内分泌代谢杂志,2014,(05):313.[doi:10.3760/cma.j.issn.1673-4157.2014.05.007]
 Tang Qin,Shao Li..Protein acetylation and insulin secretion[J].International Journal of Endocrinology and Metabolism,2014,(02):313.[doi:10.3760/cma.j.issn.1673-4157.2014.05.007]
[7]卢婷婷,任思佳,沈捷.人群迁徙对糖尿病患病率的影响及其相关因素[J].国际内分泌代谢杂志,2014,(05):327.[doi:10.3760/cma.j.issn.1673-4157.2014.05.011]
 Lu Tingting,Ren Sijia,Shen Jie..Impact of migration on prevalence of diabetes and risk factors[J].International Journal of Endocrinology and Metabolism,2014,(02):327.[doi:10.3760/cma.j.issn.1673-4157.2014.05.011]
[8]包薇萍,陈国芳,刘超.DPP-4抑制剂的肾保护作用[J].国际内分泌代谢杂志,2014,(05):337.[doi:10.3760/cma.j.issn.1673-4157.2014.05.014]
 Bao Weiping,Chen Guofang,Liu Chao..Renal protective effects of dipeptidyl peptidase-4 inhibitors[J].International Journal of Endocrinology and Metabolism,2014,(02):337.[doi:10.3760/cma.j.issn.1673-4157.2014.05.014]
[9]孟庆冬,陶红.巨噬细胞凋亡与糖尿病动脉粥样硬化[J].国际内分泌代谢杂志,2014,(05):340.[doi:10.3760/cma.j.issn.1673-4157.2014.05.015]
 Meng Qingdong,Tao Hong..Macrophage apoptosis and diabetic atherosclerosis[J].International Journal of Endocrinology and Metabolism,2014,(02):340.[doi:10.3760/cma.j.issn.1673-4157.2014.05.015]
[10]赵荷珺 洪天配.胰高血糖素样肽-1类药物与胰腺安全性[J].国际内分泌代谢杂志,2015,(05):319.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.008]
 Zhao Hejun*,Hong Tianpei..Glucagon-like peptide-1-based therapies and pancreatic safety[J].International Journal of Endocrinology and Metabolism,2015,(02):319.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.008]

备注/Memo

备注/Memo:
通信作者:李倩,Email:shygu@njmu.edu.cn
基金项目:江苏省自然科学基金(BK20171121)
Corresponding author: Li Qian, Email:shygu@njmu.edu.cn
Fund program:Natural Science Foundation of Jiangsu Province of China(BK20171121)
更新日期/Last Update: 2020-03-20