[1]冷清阳,李畅,周建华,等.二氢杨梅素通过抑制脂质合成途径改善 非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2020,40(06):376-381.[doi:10.3760/cma.j.cn121383-20200205-02004]
 Leng Qingyang,Li Chang,Zhou Jianhua,et al.Dihydromyricin ameliorates non-alcoholic fatty liver disease by inhibiting lipid synthesis[J].International Journal of Endocrinology and Metabolism,2020,40(06):376-381.[doi:10.3760/cma.j.cn121383-20200205-02004]
点击复制

二氢杨梅素通过抑制脂质合成途径改善 非酒精性脂肪性肝病()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
40
期数:
2020年06期
页码:
376-381
栏目:
论著
出版日期:
2020-11-20

文章信息/Info

Title:
Dihydromyricin ameliorates non-alcoholic fatty liver disease by inhibiting lipid synthesis
作者:
冷清阳李畅周建华刘璐李娜龚飒张浩李晓华
上海中医药大学附属第七人民医院内分泌科 200137
Author(s):
Leng Qingyang Li Chang Zhou Jianhua Liu Lu Li Na Gong Sa Zhang Hao Li Xiaohua
Department of Endocrinology, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
关键词:
二氢杨梅素 非酒精性脂肪性肝病 脂质合成 固醇调节元件结合蛋白-1c 脂肪酸合酶
Keywords:
Dihydromyricin Non-alcoholic fatty liver disease Lipid synthesis Sterol regulatory-element binding proteins 1c Fatty acid synthase
DOI:
10.3760/cma.j.cn121383-20200205-02004
文献标志码:
A
摘要:
目的 探讨二氢杨梅素对非酒精性脂肪性肝病(NAFLD)的改善作用及其潜在作用机制。方法 高脂饮食诱导的NAFLD模型建造成功后,使用随机数字表法将小鼠分为两组,一组通过灌胃的方法给予二氢杨梅素(100 mg·kg-1·d-1),另一组给予对应体积的生理盐水,持续给药4周。期间,每周测量体重、进食量。4周后,行葡萄糖耐量实验、胰岛素释放实验和胰岛素耐量实验。小鼠处死后,检测肝脏脂质沉积情况,并对血脂、肝功能及肝脏中脂代谢相关基因的表达情况进行分析。结果 二氢杨梅素治疗后,高脂喂养小鼠体重明显降低,糖脂代谢、肝功能均有所改善,肝脏脂肪变性减轻、甘油三酯含量降低(t=2.161~7.315,P均<0.05)。此外,肝脏固醇调节元件结合蛋白-1c(SREBP-1c,t=3.2,P<0.05)和脂肪酸合酶(FASN,t=7.116,P<0.01)mRNA及蛋白表达水平均明显下调。结论 二氢杨梅素通过降低SREBP-1c/FASN的表达进而抑制肝脏脂质从头合成途径而改善NAFLD。
Abstract:
Objective To explore the effect of dihydromyricin on the improvement of non-alcoholic fatty liver disease and its potential mechanism.Methods The mice of non-alcoholic fatty liver disease model induced by high fat diet were randomly divided into two groups using a random number table, one group was given dihydromyricin(100 mg·kg-1·d-1)by gavage, and the other group was given the corresponding volume of normal saline. During this period, body weight and food intake were measured weekly. After treatment for 4 weeks, the glucose tolerance, insulin release and insulin tolerance tests were measured. The lipid accumulation in the liver was detected and the level of serum lipid, the expression of lipid metabolism-related genes and liver functions were analyzed.Results After treatment with dihydromyricin, the mice had significantly lower body weight, better metabolic profiles and liver function. In addition, the mice treated by dihydromyricin had less steatosis and triglyceride content in liver(t=2.161-7.315, all P<0.05). The mRNA and protein expression levels of sterol regulatory element binding protein 1c(SREBP-1c, t=3.2, P<0.05)and fatty acid synthase(FASN, t=7.116, P<0.01)were significantly down-regulated.Conclusion Dihydromyricin can inhibit the de novo synthesis of liver lipids by reducing the expression of SREBP-1c/FASN and ameliorate non-alcoholic fatty liver disease.

参考文献/References:

[1] Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease:practice guidance from the American Association for the Study of Liver Diseases[J].Hepatology,2018,67(1):328-357.DOI:10.1002/hep.29367.
[2] Lau JK, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances[J].J Pathol, 2017,241(1):36-44.DOI:10.1002/path.4829.
[3] Fan M, Choi YJ, Tang Y, et al. Efficacy and mechanism of polymerized anthocyanin from grape-skin extract on high-fat-diet-induced nonalcoholic fatty liver disease[J].Nutrients,2019,11(11):2586.DOI:10.3390/nu11112586.
[4] Chen S, Zhao X, Wan J, et al. Dihydromyricetin improves glucose and lipid metabolism and exerts anti-inflammatory effects in nonalcoholic fatty liver disease:a randomized controlled trial[J].Pharmacol Res, 2015,99(1):74-81.DOI:10.1016/j.phrs.2015.05.009.
[5] Le L, Jiang B, Wan W, et al. Metabolomics reveals the protective of dihydromyricetin on glucose homeostasis by enhancing insulin sensitivity[J]. Sci Rep, 2016,6(1):36184.DOI:10.1038/srep36184.
[6] Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis[J].J Clin Invest,2015,125(2):478-486.DOI:10.1172/JCI78362.
[7] Singh AK, Aryal B, Chaube B, et al. Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis[J].Mol Metab,2018,11:59-69.DOI:10.1016/j.molmet.2018.03.011.
[8] Liu W, Cao H, Yan J, et al. ‘Micro-managers' of hepatic lipid metabolism and NAFLD[J].Wiley Interdiscip Rev RNA, 2015,6(5):581-593.DOI:10.1002/wrna.1295.
[9] Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease[J].J Gastroenterol,2013,48(4):434-441.DOI:10.1007/s00535-013-0758-5.
[10] Frederico MJ, Vitto MF, Cesconetto PA, et al. Short-term inhibition of SREBP-1c expression reverses diet-induced non-alcoholic fatty liver disease in mice[J].Scand J Gastroenterol,2011,46(11):1381-1388.DOI:10.3109/00365521.2011.613945.
[11] Zhang M, Sun W, Zhou M, et al. MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1[J].Sci Rep, 2017,7(1):14493.DOI:10.1038/s41598-017-15141-x.
[12] Linden AG, Li S, Choi HY, et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice[J].J Lipid Res, 2018,59(3):475-487.DOI:10.1194/jlr.M081836.
[13] Wang C, Yan L, Hao M, et al. Astragaloside Ⅳ inhibits triglyceride accumulation in insulin-resistant HepG2 cells via AMPK-induced SREBP-1c phosphorylation[J].Front Pharmacol,2018,9(1):345.DOI:10.3389/fphar.2018.00345.
[14] Jung YA, Kim HK, Bae KH, et al. Cilostazol inhibits insulin-stimulated expression of sterol regulatory binding protein-1c via inhibition of LXR and Sp1[J].Exp Mol Med,2014,46(1):e73.DOI:10.1038/emm.2013.143.
[15] Wang GX, Zhao XY, Meng ZX, et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis[J].Nat Med,2014,20(12):1436-1443.DOI:10.1038/nm.3713.
[16] Jung EJ, Kwon SW, Jung BH, et al. Role of the AMPK/SREBP-1 pathway in the development of orotic acid-induced fatty liver[J].J Lipid Res,2011,52(9):1617-1625.DOI: 10.1194/jlr.M015263.
[17] Shi LY, Zhang T, Liang XY, et al. Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway[J].Mol Cell Endocrinol,2015,409:92-102.DOI:10.1016/j.mce.2015.03.009.
[18] Guo L,Zhang HF,Yan XP. Protective effect of dihydromyricetin revents fatty liver through nuclear factor κB/p53/B cell lymphoma 2 associated X protein signaling pathways in a rat model[J].Mol Med Rep,2019,19(3):1638-1644.DOI:10.3892/mmr.2018.9783.

相似文献/References:

[1]曹涵,曲伸.过氧化物酶体增殖物活化受体与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2014,(06):404.[doi:10.3760/cma.j.issn.1673-4157.2014.06.012]
 Cao Han,Qu Shen..Peroxisome proliferator-activated receptors and non-alcoholic fatty liver diseases[J].International Journal of Endocrinology and Metabolism,2014,(06):404.[doi:10.3760/cma.j.issn.1673-4157.2014.06.012]
[2]胡雅琴,包玉倩.维生素D对非酒精性脂肪性肝病的保护作用[J].国际内分泌代谢杂志,2014,(06):408.[doi:10.3760/cma.j.issn.1673-4157.2014.06.013]
 Hu Yaqin,Bao Yuqian..Protective effect of vitamin D on non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(06):408.[doi:10.3760/cma.j.issn.1673-4157.2014.06.013]
[3]聂秀玲,李明珍,孙丽荣.高尿酸血症与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2016,36(02):89.[doi:10.3760/cma.j.issn.1673-4157.2016.02.004]
 Nie Xiuling,Li Mingzhen,Sun Lirong..Hyperuricemia and non-alcoholic fatty liver[J].International Journal of Endocrinology and Metabolism,2016,36(06):89.[doi:10.3760/cma.j.issn.1673-4157.2016.02.004]
[4]张洁,邸阜生.运动防治非酒精性脂肪性肝病的机制[J].国际内分泌代谢杂志,2016,36(06):404.[doi:10.3760/cma.j.issn.1673-4157.2016.06.12]
 Zhang Jie,Di Fusheng..Mechanism of exercise on non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2016,36(06):404.[doi:10.3760/cma.j.issn.1673-4157.2016.06.12]
[5]张雅楠,郗光霞,杨翠萍,等.自噬在非酒精性脂肪性肝病中的变化及作用[J].国际内分泌代谢杂志,2017,37(01):11.[doi:10.3760/cma.j.issn.1673-4157.2017.01.03]
 Zhang Yanan*,Xi Guangxia,Yang Cuiping,et al.The change and function of autophagy in nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2017,37(06):11.[doi:10.3760/cma.j.issn.1673-4157.2017.01.03]
[6]李博,苏青.晚期糖基化终末产物及其受体与非酒精性脂肪性肝病的 关系[J].国际内分泌代谢杂志,2017,37(03):192.[doi:10.3760/cma.j.issn.1673-4157.2017.03.013]
 Li Bo,Su Qing..Relationship between advanced glycation end-products and its receptor in nonalcoholic fatty liver diseases[J].International Journal of Endocrinology and Metabolism,2017,37(06):192.[doi:10.3760/cma.j.issn.1673-4157.2017.03.013]
[7]狄红杰,刘超.饮食干预对非酒精性脂肪性肝病肠道菌群的影响[J].国际内分泌代谢杂志,2017,37(04):254.
 Di Hongjie,Liu Chao..Effects of diet interventions on gut microbiota of nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2017,37(06):254.
[8]林楚曼 林伟浩 周蕊 杨力.GLP-1缓解非酒精性脂肪性肝病相关信号通路的研究进展[J].国际内分泌代谢杂志,2018,38(03):179.[doi:10.3760/cma.j.issn.1673-4157.2018.03.009]
 Lin Chuman*,Lin Weihao,Zhou Rui,et al.The research progresses on GLP-1 related signal pathways in alleviating non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2018,38(06):179.[doi:10.3760/cma.j.issn.1673-4157.2018.03.009]
[9]李霞 雷涛.铁过载与代谢性疾病的关系[J].国际内分泌代谢杂志,2018,38(01):29.[doi:10.3760/cma.j.issn.1673-4157.2018.01.008]
 Li Xia*,Lei Tao..Relationship between iron overload and metabolic diseases[J].International Journal of Endocrinology and Metabolism,2018,38(06):29.[doi:10.3760/cma.j.issn.1673-4157.2018.01.008]
[10]曹白鸽 董艳.母体妊娠期高脂饮食所致的炎性反应状态对子代的影响[J].国际内分泌代谢杂志,2018,38(02):96.[doi:10.3760/cma.j.issn.1673-4157.2018.02.006]
 Cao Baige*,Dong Yan..Effects of inflammatory state on offspring induced by maternal high-fat diet during pregnancy[J].International Journal of Endocrinology and Metabolism,2018,38(06):96.[doi:10.3760/cma.j.issn.1673-4157.2018.02.006]

备注/Memo

备注/Memo:
通信作者:李晓华,Email:wendylee_tcm@shutcm.edu.cn
更新日期/Last Update: 2020-11-20