[1]张洁,邸阜生.运动防治非酒精性脂肪性肝病的机制[J].国际内分泌代谢杂志,2016,36(06):404-407.[doi:10.3760/cma.j.issn.1673-4157.2016.06.12]
 Zhang Jie,Di Fusheng..Mechanism of exercise on non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2016,36(06):404-407.[doi:10.3760/cma.j.issn.1673-4157.2016.06.12]
点击复制

运动防治非酒精性脂肪性肝病的机制()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
36
期数:
2016年06期
页码:
404-407
栏目:
综述
出版日期:
2016-11-20

文章信息/Info

Title:
Mechanism of exercise on non-alcoholic fatty liver disease
作者:
张洁邸阜生
300170 天津市第三中心医院内分泌科,天津市人工细胞重点实验室
Author(s):
Zhang Jie Di Fusheng.
Department of Endocrinology, The Third Central Hospital, Tianjin Key Laboratory of Artificial Cells(TKL), Tianjin 300170, China
关键词:
运动 非酒精性脂肪性肝病 AMPK 自噬
Keywords:
Exercise Non-alcoholic fatty liver disease AMPK Autophagy
DOI:
10.3760/cma.j.issn.1673-4157.2016.06.12
摘要:
非酒精性脂肪性肝病(NAFLD)目前已经成为全球流行的慢性肝脏疾病。运动能够改善NAFLD。研究证实,运动能够减轻肝脏脂肪沉积及炎性反应,但其具体机制尚不明确,有待进一步研究。
Abstract:
Non-alcoholic fatty liver disease(NAFLD)is the most common liver disease around the world. Physical activity enables to improve NAFLD. According to researches, exercise can reduce the liver fat deposition and inflammation. However, the mechanisms responsible for these effects are incompletely understood and need further study.

参考文献/References:

[1] Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease(NAFLD)[J].Prog Lipid Res, 2009,48(1):1-26. DOI: 10.1016/j.plipres.2008.08.001.
[2] Alkhouri N, Carter-Kent C, Feldstein AE. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications[J]. Expert Rev Gastroenterol Hepatol, 2011,5(2):201-212. DOI: 10.1586/egh.11.6. DOI:10.1586/egh.11.6.
[3] Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role[J].Best Pract Res Clin Endocrinol Metab, 2005,19(4):471-482. DOI:10.1016/j.beem.2005.07.004.
[4] Delarue J, Magnan C. Free fatty acids and insulin resistance[J].Curr Opin Clin Nutr Metab Care, 2007,10(2):142-148. DOI:10.1097/MCO.0b013e328042ba90.
[5] Koo SH. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis[J].Clin Mol Hepatol, 2013,19(3):210-215. DOI: 10.3350/cmh.2013.19.3.210.
[6] Pedersen BK. Muscle as a secretory organ[J].Compr Physiol, 2013,3(3):1337-1362. DOI: 10.1002/cphy.c120033.
[7] Bostr?m P, Wu J, Jedrychowski MP,et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J].Nature, 2012,481(7382):463-468. DOI: 10.1038/nature10777.
[8] Foretz M, Ancellin N, Andreelli F,et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver[J].Diabetes, 2005,54(5):1331-1339.
[9] Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action[J].J Clin Invest, 2001,108(8):1167-1174. DOI:10.1172/JCI13505.
[10] Li Y, Xu S, Mihaylova MM,et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J].Cell Metab, 2011,13(4):376-388. DOI: 10.1016/j.cmet.2011.03.009.
[11] Cintra DE, Ropelle ER, Vitto MF, et al. Reversion of hepatic steatosis by exercise training in obese mice: the role of sterol regulatory elementbinding protein-1c[J]. Life Sci, 2012,91:395-401. DOI: 10.1016/j.lfs.2012.08.002.
[12] Cho J, Lee I, Kim D,et al. Effect of aerobic exercise training on non-alcoholic fatty liver disease induced by a high fat diet in C57BL/6 mice[J].J Exerc Nutrition Biochem, 2014,18(4):339-346. DOI: 10.5717/jenb.2014.18.4.339.
[13] Liu X, Yuan H, Niu Y, et al. The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice[J].Biochim Biophys Acta, 2012,1822(11):1716-1726. DOI: 10.1016/j.bbadis.2012.07.008.
[14] Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1[J].Cell,1999,98(1):115-124. DOI:10.1016/S0092-8674(00)80611-X.
[15] Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle[J].Appl Physiol Nutr Metab, 2009,34(3):465-472. DOI: 10.1139/H09-045.
[16] Aubert J, Begriche K, Knockaert L, et al. Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role[J].Clin Res Hepatol Gastroenterol, 2011,35(10):630-637. DOI: 10.1016/j.clinre.2011.04.015.
[17] Basaranoglu M, Basaranoglu G, Sentürk H. From fatty liver to fibrosis: a tale of "second hit"[J].World J Gastroenterol, 2013,19(8):1158-1165. DOI: 10.3748/wjg.v19.i8.1158.
[18] Fan Q, Chen M, Fang X,et al. Aging might augment reactive oxygen species(ROS)formation and affect reactive nitrogen species(RNS)level after myocardial ischemia/reperfusion in both humans and rats[J].Age(Dordr), 2013,35(4):1017-1026. DOI: 10.1007/s11357-012-9421-y.
[19] Prakash PA, Yogeswaran U, Chen SM. A review on direct electrochemistry of catalase for electrochemical sensors[J].Sensors(Basel),2009,9(3):1821-1844. DOI: 10.3390/s90301821.
[20] Salminen A, Vihko V. Lipid peroxidation in exercise myopathy[J].Exp Mol Pathol,1983,38(3):380-388.
[21] Xiao J, Ching YP, Liong EC,et al. Garlic-derived S-allylmercaptocysteine is a hepato-protective agent in non-alcoholic fatty liver disease in vivo animal model[J]. Eur J Nutr, 2013,52(1):179-191. DOI: 10.1007/s00394-012-0301-0.
[22] Xiao J, Ho CT, Liong EC,et al. Epigallocatechin gallate attenuates fibrosis, oxidative stress, and inflammation in non-alcoholic fatty liver disease rat model through TGF/SMAD, PI3K/Akt/FoxO1, and NF-kappa B pathways[J].Eur J Nutr,2014,53(1):187-199. DOI: 10.1007/s00394-013-0516-8.
[23] Gleeson M, Bishop NC, Stensel DJ, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease[J].Nat Rev Immunol, 2011,11(9):607-615. DOI: 10.1038/nri3041.
[24] Lamprecht M, Obermayer G, Steinbauer K, et al. Supplementation with a juice powder concentrate and exercise decrease oxidation and inflammation, and improve the microcirculation in obese women: randomised controlled trial data[J].Br J Nutr,2013,110(9):1685-1695. DOI: 10.1017/S0007114513001001.
[25] Kawanishi N, Yano H, Yokogawa Y, et al. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice[J].Exerc Immunol Rev, 2010,16:105-118.
[26] Kawanishi N, Yano H, Mizokami T,et al. Exercise training attenuates hepatic inflammation, fibrosis and macrophage infiltration during diet induced-obesity in mice[J].Brain Behav Immun,2012,26(6):931-941. DOI: 10.1016/j.bbi.2012.04.006.
[27] Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J].Cell,2008,132(1):27-42. DOI: 10.1016/j.cell.2007.12.018.
[28] He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy[J].Annu Rev Genet,2009,43:67-93. DOI: 10.1146/annurev-genet-102808-114910.
[29] Burman C, Ktistakis NT. Regulation of autophagy by phosphatidylinositol 3-phosphate[J].FEBS Lett,2010,584(7):1302-1312. DOI: 10.1016/j.febslet.2010.01.011.
[30] Egan D, Kim J, Shaw RJ,et al. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR[J].Autophagy,2011,7(6):643-644.
[31] Kim J, Guan KL. AMPK connects energy stress to PIK3C3/VPS34 regulation[J].Autophagy,2013,9(7):1110-1111. DOI: 10.4161/auto.24877.
[32] He C, Bassik MC, Moresi V, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis[J].Nature,2012,481(7382):511-515. DOI: 10.1038/nature10758.

相似文献/References:

[1]曹涵,曲伸.过氧化物酶体增殖物活化受体与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2014,(06):404.[doi:10.3760/cma.j.issn.1673-4157.2014.06.012]
 Cao Han,Qu Shen..Peroxisome proliferator-activated receptors and non-alcoholic fatty liver diseases[J].International Journal of Endocrinology and Metabolism,2014,(06):404.[doi:10.3760/cma.j.issn.1673-4157.2014.06.012]
[2]胡雅琴,包玉倩.维生素D对非酒精性脂肪性肝病的保护作用[J].国际内分泌代谢杂志,2014,(06):408.[doi:10.3760/cma.j.issn.1673-4157.2014.06.013]
 Hu Yaqin,Bao Yuqian..Protective effect of vitamin D on non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(06):408.[doi:10.3760/cma.j.issn.1673-4157.2014.06.013]
[3]刘璐,李鸿.代谢调控的新靶点——Irisin[J].国际内分泌代谢杂志,2014,(02):109.[doi:10.3760/cma.j.issn.1673-4157.2014.02.011]
 Liu Lu,Li Hong..A new target in metabolic control--Irisin[J].International Journal of Endocrinology and Metabolism,2014,(06):109.[doi:10.3760/cma.j.issn.1673-4157.2014.02.011]
[4]褚月颉,郑从从,丁敏,等.运动对后肢缺血糖尿病大鼠骨骼肌血管新生及Amot表达的影响[J].国际内分泌代谢杂志,2014,(04):220.[doi:10.3760/cma.j.issn.1673-4157.2014.04.002]
 Chu Yuejie,Zheng Congcong,Ding Min,et al.Effects of exercises on skeletal muscle angiogenesis and Amot expression in diabetic rats with ischemic hindlimbs[J].International Journal of Endocrinology and Metabolism,2014,(06):220.[doi:10.3760/cma.j.issn.1673-4157.2014.04.002]
[5]聂秀玲,李明珍,孙丽荣.高尿酸血症与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2016,36(02):89.[doi:10.3760/cma.j.issn.1673-4157.2016.02.004]
 Nie Xiuling,Li Mingzhen,Sun Lirong..Hyperuricemia and non-alcoholic fatty liver[J].International Journal of Endocrinology and Metabolism,2016,36(06):89.[doi:10.3760/cma.j.issn.1673-4157.2016.02.004]
[6]张雅楠,郗光霞,杨翠萍,等.自噬在非酒精性脂肪性肝病中的变化及作用[J].国际内分泌代谢杂志,2017,37(01):11.[doi:10.3760/cma.j.issn.1673-4157.2017.01.03]
 Zhang Yanan*,Xi Guangxia,Yang Cuiping,et al.The change and function of autophagy in nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2017,37(06):11.[doi:10.3760/cma.j.issn.1673-4157.2017.01.03]
[7]李博,苏青.晚期糖基化终末产物及其受体与非酒精性脂肪性肝病的 关系[J].国际内分泌代谢杂志,2017,37(03):192.[doi:10.3760/cma.j.issn.1673-4157.2017.03.013]
 Li Bo,Su Qing..Relationship between advanced glycation end-products and its receptor in nonalcoholic fatty liver diseases[J].International Journal of Endocrinology and Metabolism,2017,37(06):192.[doi:10.3760/cma.j.issn.1673-4157.2017.03.013]
[8]林延艳,赵林双.运动改善糖尿病心肌病的机制[J].国际内分泌代谢杂志,2017,37(03):207.[doi:10.3760/cma.j.issn.1673-4157.2017.03.017]
 Lin Yanyan,Zhao Linshuang..Mechanisms of exercise in improving diabetic cardiomyopathy[J].International Journal of Endocrinology and Metabolism,2017,37(06):207.[doi:10.3760/cma.j.issn.1673-4157.2017.03.017]
[9]狄红杰,刘超.饮食干预对非酒精性脂肪性肝病肠道菌群的影响[J].国际内分泌代谢杂志,2017,37(04):254.
 Di Hongjie,Liu Chao..Effects of diet interventions on gut microbiota of nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2017,37(06):254.
[10]林楚曼 林伟浩 周蕊 杨力.GLP-1缓解非酒精性脂肪性肝病相关信号通路的研究进展[J].国际内分泌代谢杂志,2018,38(03):179.[doi:10.3760/cma.j.issn.1673-4157.2018.03.009]
 Lin Chuman*,Lin Weihao,Zhou Rui,et al.The research progresses on GLP-1 related signal pathways in alleviating non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2018,38(06):179.[doi:10.3760/cma.j.issn.1673-4157.2018.03.009]

备注/Memo

备注/Memo:
基金项目:天津市卫生局科技基金重点资助项目(2010KR02)
更新日期/Last Update: 2016-12-20