[1]孔晓艳 鲁一兵.SGLT2抑制剂对2型糖尿病患者血尿酸水平的影响[J].国际内分泌代谢杂志,2020,40(02):97-99,120.[doi:10.3760/cma.j.issn.1673-4157.2020.02.006]
 Kong Xiaoyan,Lu Yibing.Effect of SGLT2 inhibitors on serum uric acid level in patients with type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2020,40(02):97-99,120.[doi:10.3760/cma.j.issn.1673-4157.2020.02.006]
点击复制

SGLT2抑制剂对2型糖尿病患者血尿酸水平的影响()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
40
期数:
2020年02期
页码:
97-99,120
栏目:
综述
出版日期:
2020-03-20

文章信息/Info

Title:
Effect of SGLT2 inhibitors on serum uric acid level in patients with type 2 diabetes mellitus
作者:
孔晓艳 鲁一兵
南京医科大学第二附属医院内分泌科 210011
Author(s):
Kong Xiaoyan Lu Yibing
Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
关键词:
钠-葡萄糖协同转运蛋白2抑制剂 2型糖尿病 高尿酸血症
Keywords:
Sodium-glucose co-transporter 2 inhibitor Type 2 diabetes mellitus Hyperuricemia
DOI:
10.3760/cma.j.issn.1673-4157.2020.02.006
摘要:
钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂是一种新型降糖药,可控制血糖、降低心血管事件、改善肾功能等。越来越多的数据表明,SGLT2抑制剂也可降低血尿酸水平。可能的机制是近端肾小管腔内葡萄糖的排泄增强,通过顶端膜上葡萄糖转运蛋白(GLUT)9亚型2 促进细胞内尿酸盐的交换,导致尿酸分泌增加,且SGLT2抑制剂抑制肾小管重吸收葡萄糖,导致尿中葡萄糖增加,这可能会抑制集合管中GLUT9亚型2介导的尿酸重吸收。另一种可能的机制是SGLT2抑制剂通过降低血清胰岛素浓度,减少尿酸盐重吸收转运蛋白1(URAT1)对尿酸的重吸收。
Abstract:
Inhibitors of sodium-glucose co-transporter 2(SGLT2)is a novel hypoglycemic agent. They can improve hyperglycemia, reduce cardiovascular events and improve renal function.Increasing data suggests that SGLT2 inhibitors reduce serum uric acid level. The possible mechanism is that the enhanced delivery of glucose in the lumen of the proximal tubule may facilitate the exchange for intracellular urate through glucose transporter(GLUT)9 isoform 2 in the apical membrane, thereby enhancing urinary urate excretion, and SGLT2 inhibitors inhibit the reabsorption of glucose in renal tubules, resulting in increased glucose in urine, which may inhibit the reabsorption of uric acid mediated by GLUT9 isoform 2 in the collecting tubule.Another possible mechanism is that SGLT2 inhibitors reduce uratetransporter 1(URAT1)reabsorption of uric acid by reducing serum insulin concentration.

参考文献/References:

[1] Vallon V,Thomson SC.Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition[J].Diabetologia,2017,60(2):215-225.DOI:10.1007/s00125-016-4157-3.
[2] Leiter LA,Cefalu WT,de Bruin TW,et al.Dapagliflozin added to usual care in individuals with type 2 diabetes mellitus with preexisting cardiovascular disease:a 24-week,multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension[J].J Am Geriatr Soc,2014,62(7):1252-1262.DOI:10.1111/jgs.12881.
[3] Riser Taylor S,Harris KB.The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus[J].Pharmacotherapy,2013,33(9):984-999.DOI:10.1002/phar.1303. [4] Hediger MA,Johnson RJ,Miyazaki H,et al. Molecular physiology of urate transport[J].Physiology(Bethesda),2005,20:125-133.DOI:10.1152/physiol.00039.2004.
[5] Billiet L,Doaty S,Katz JD,et al.Review of hyperuricemia as new marker for metabolic syndrome[J].ISRN Rheumatol,2014,2014:852954.DOI:10.1155/2014/852954.
[6] Hao Z,Huang X,Shao H,et al.Effects of dapagliflozin on serum uric acid levels in hospitalized type 2 diabetic patients with inadequate glycemic control: a randomized controlled trial[J].Ther Clin Risk Manag,2018,14:2407-2413.DOI:10.2147/TCRM.S186347.
[7] Xu Y,Zhu J,Gao L,et al.Hyperuricemia as an independent predictor of vascular complications and mortality in type 2 diabetes patients: a meta-analysis[J].PLoS One,2013,8(10):e78206.DOI:10.1371/journal.pone.0078206.
[8] Maiuolo J,Oppedisano F,Gratteri S,et al.Regulation of uric acid metabolism and excretion[J].Int J Cardiol,2016,213:8-14.DOI:10.1016/j.ijcard.2015.08.109.
[9] So A,Thorens B.Uric acid transport and disease[J].J Clin Invest,2010,120(6):1791-1799.DOI:10.1172/JCI42344.
[10] Novikov A,Fu Y,Huang W,et al.SGLT2 inhibition and renal urate excretion: role of luminal glucose,GLUT9, and URAT1[J].Am J Physiol Renal Physiol,2019,316(1):F173-F185.DOI:10.1152/ajprenal.00462.2018.
[11] Wright AF,Rudan I,Hastie ND,et al.A 'complexity' of urate transporters[J].Kidney Int,2010,78(5):446-452.DOI:10.1038/ki.2010.206.
[12] Bailey CJ.Uric acid and the cardio-renal effects of SGLT2 inhibitors[J].Diabetes Obes Metab,2019,21(6):1291-1298.DOI:10.1111/dom.13670.
[13] Bobulescu IA,Moe OW.Renal transport of uric acid: evolving concepts and uncertainties[J].Adv Chronic Kidney Dis,2012,19(6):358-371.DOI:10.1053/j.ackd.2012.07.009.
[14] Zhao Y,Xu L,Tian D,et al.Effects of sodium-glucose co-transporter 2(SGLT2)inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials[J].Diabetes Obes Metab,2018,20(2):458-462.DOI:10.1111/dom.13101.
[15] Zinman B,Wanner C,Lachin JM,et al.Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J].N Engl J Med,2015,373(22):2117-2128.DOI:10.1056/NEJMoa1504720.
[16] Davies MJ,Trujillo A,Vijapurkar U,et al.Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus[J].Diabetes Obes Metab,2015,17(4):426-429.DOI:10.1111/dom.12439.
[17] Sha S,Polidori D,Heise T,et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus[J].Diabetes Obes Metab,2014,16(11):1087-1095.DOI:10.1111/dom.12322.
[18] List JF,Woo V,Morales E,et al.Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes[J].Diabetes Care,2009,32(4):650-657.DOI:10.2337/dc08-1863.
[19] Bailey CJ,Gross JL,Hennicken D,et al.Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind,placebo-controlled 102-week trial[J].BMC Med,2013,11:43.DOI:10.1186/1741-7015-11-43.
[20] Wilding JP,Norwood P,T'joen C,et al.A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers:applicability of a novel insulin-independent treatment[J].Diabetes Care,2009,32(9):1656-1662.DOI:10.2337/dc09-0517.
[21] Chino Y,Samukawa Y,Sakai S,et al.SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria[J].Biopharm Drug Dispos,2014,35(7):391-404.DOI:10.1002/bdd.1909.
[22] Ouchi M,Oba K,Kaku K,et al.Uric acid lowering in relation to HbA1c reductions with the SGLT2 inhibitor tofogliflozin[J].Diabetes Obes Metab,2018,20(4):1061-1065.DOI:10.1111/dom.13170.
[23] Caulfield MJ,Munroe PB,O'Neill D,et al.SLC2A9 is a high-capacity urate transporter in humans[J].PLoS Med,2008,5(10):e197.DOI:10.1371/journal.pmed.0050197.
[24] Kimura T,Takahashi M,Yan K,et al.Expression of SLC2A9 isoforms in the kidney and their localization in polarize depithelial cells[J].PLoS One,2014,9(1):e84996.DOI:10.1371/journal.pone.0084996.
[25] Lytvyn Y, Sˇkrti M,Yang GK,et al.Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus[J].Am J Physiol Renal Physiol,2015,308(2):F77-F83.DOI:10.1152/ajprenal.00555.2014.
[26] Samukawa Y,Omiya H,Watase H,et al.Substantial effects of luseogliflozin revealed by analyzing responses to postprandial hyperglycemia: post hoc subanalyses of a randomized controlled study[J].Adv Ther,2016,33(7):1215-1230.DOI:10.1007/s12325-016-0350-5.
[27] Muscelli E,Natali A,Bianchi S,et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension[J].Am J Hypertens,1996,9(8):746-752.DOI:10.1016/0895-7061(96)00098-2.
[28] Toyoki D,Shibata S,Kuribayashi-Okuma E,et al.Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2[J].Am J Physiol Renal Physiol,2017,313(3):F826-F834.DOI:10.1152/ajprenal.00012.2017.

相似文献/References:

[1]赵紫琴,雒瑢,田凤石,等.替米沙坦对OLETF大鼠皮下和内脏脂肪组织PPARγ表达的影响[J].国际内分泌代谢杂志,2014,(06):365.[doi:10.3760/cma.j.issn.1673-4157.2014.06.002]
 Zhao Ziqin*,Luo Rong,Tian Fengshi,et al.Effects of telmisartan on expression of PPARγ in subcutaneous and visceral adipose tissue in OLETF rats[J].International Journal of Endocrinology and Metabolism,2014,(02):365.[doi:10.3760/cma.j.issn.1673-4157.2014.06.002]
[2]姚霜霜,张翼飞,张志国,等.小檗碱改善代谢性疾病的肠道相关机制[J].国际内分泌代谢杂志,2014,(06):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
 Yao Shuangshuang,Zhang Yifei,Zhang Zhiguo,et al.The gut-related mechanisms of berberine in the treatment of metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(02):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
[3]曹萌 韦晓 刘超.自噬与胰岛β细胞功能及2型糖尿病[J].国际内分泌代谢杂志,2015,(01):53.[doi:10.3760/cma.j.issn.1673-4157.2015.01.013]
 Cao Meng,Wei Xiao,Liu Chao..Relationship between autophagy and islet β cells function, type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2015,(02):53.[doi:10.3760/cma.j.issn.1673-4157.2015.01.013]
[4]刘艳 田秀标 韩颖.GLP-1受体激动剂呈葡萄糖依赖性刺激胰岛β细胞胰岛素分泌的机制[J].国际内分泌代谢杂志,2015,(01):66.[doi:10.3760/cma.j.issn.1673-4157.2015.01.017]
 Liu Yan*,Tian Xiubiao,Han Ying..Mechanism of GLP-1 receptor agonists in the stimulation of insulin secretion of islet β cell in a glucose-dependent manner[J].International Journal of Endocrinology and Metabolism,2015,(02):66.[doi:10.3760/cma.j.issn.1673-4157.2015.01.017]
[5]齐利琴,刘礼斌.GLP-1在2型糖尿病诱发的阿尔茨海默病治疗中的作用[J].国际内分泌代谢杂志,2016,36(01):48.[doi:10.3760/cma.j.issn.1673-4157.2016.01.012]
 Qi Liqin,Liu Libin..Effects of GLP-1 in the treatment of Alzheimer's disease induced by type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2016,36(02):48.[doi:10.3760/cma.j.issn.1673-4157.2016.01.012]
[6]梅稳,向光大,卢俊颜,等.GDF11对ApoE-/-糖尿病小鼠内皮依赖性 血管舒张功能的作用[J].国际内分泌代谢杂志,2016,36(02):101.[doi:10.3760/cma.j.issn.1673-4157.2016.02.007]
 Mei Wen*,Xiang Guangda,Lu Junyan,et al.Effects of GDF11 on endothelium-dependent vasodiation function of aorta in ApoE-/- diabetic mice[J].International Journal of Endocrinology and Metabolism,2016,36(02):101.[doi:10.3760/cma.j.issn.1673-4157.2016.02.007]
[7]殷俏,张云良,郭淑芹,等.视黄醇结合蛋白4、超敏C反应蛋白 与糖尿病视网膜病变的关系[J].国际内分泌代谢杂志,2016,36(03):149.[doi:10.3760/cma.j.issn.1673-4157.2016.03.02]
 Yin Qiao,Zhang Yunliang,Guo Shuqin,et al.Relationship of retinol binding protein 4 and high sensitive C-reactive protein with diabetic retinopathy[J].International Journal of Endocrinology and Metabolism,2016,36(02):149.[doi:10.3760/cma.j.issn.1673-4157.2016.03.02]
[8]王涛,张洁,祁范范,等.不同糖耐量人群血清25(OH)D3水平 及与胰岛β细胞功能的关系[J].国际内分泌代谢杂志,2016,36(04):226.[doi:10.3760/cma.j.issn.1673-4157.2016.04.04]
 Wang Tao*,Zhang Jie,Qi Fanfan,et al.Relationship between serum 25(OH)D3 level and islet β cell function in individuals with different glucose tolerance[J].International Journal of Endocrinology and Metabolism,2016,36(02):226.[doi:10.3760/cma.j.issn.1673-4157.2016.04.04]
[9]陈双双,王楚媛,孔令芳.铬与2型糖尿病[J].国际内分泌代谢杂志,2016,36(04):272.[doi:10.3760/cma.j.issn.1673-4157.2016.04.13]
 Chen Shuangshuang,Wang Chuyuan,Kong Lingfang.Chromium and type 2 diabetes[J].International Journal of Endocrinology and Metabolism,2016,36(02):272.[doi:10.3760/cma.j.issn.1673-4157.2016.04.13]
[10]涂萍,许婷,段鹏,等.25-羟维生素D3补充对绝经后2型糖尿病 患者胰岛素敏感性及血糖控制的影响[J].国际内分泌代谢杂志,2016,36(05):299.[doi:10.3760/cma.j.issn.1673-4157.2016.05.04]
 Tu Ping,Xu Ting,Duan Peng,et al.Influence of 25-hydroxyvitamin D3 supplement on insulin sensitivity and glucose control in postmenopausal patients with type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2016,36(02):299.[doi:10.3760/cma.j.issn.1673-4157.2016.05.04]

备注/Memo

备注/Memo:
通信作者:鲁一兵,Email:luyibing2004@126.com
Corresponding author: Lu Yibing,Email:luyibing2004@126.com
更新日期/Last Update: 2020-03-20