[1]骆云晨,彭永德.m6A甲基化在非酒精性脂肪性肝病中的作用[J].国际内分泌代谢杂志,2020,40(06):391-394.[doi:10.3760/cma.j.cn121383-20200322-03061]
 Luo Yunchen,Peng Yongde.Effects of m6A methylation in the progress of nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2020,40(06):391-394.[doi:10.3760/cma.j.cn121383-20200322-03061]
点击复制

m6A甲基化在非酒精性脂肪性肝病中的作用()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
40
期数:
2020年06期
页码:
391-394
栏目:
综述
出版日期:
2020-11-20

文章信息/Info

Title:
Effects of m6A methylation in the progress of nonalcoholic fatty liver disease
作者:
骆云晨彭永德
上海交通大学医学院附属第一人民医院内分泌代谢科 200080
Author(s):
Luo Yunchen Peng Yongde
Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Medical College, Shanghai Jiaotong University, Shanghai 200080, China
关键词:
RNA甲基化 非酒精性脂肪性肝病 N6-甲基腺苷
Keywords:
RNA methylation Nonalcoholic fatty liver disease N6-methyladenosine
DOI:
10.3760/cma.j.cn121383-20200322-03061
文献标志码:
A
摘要:
RNA作为基因表达的核心成分,在基因表达过程中通过转录水平或转录后化学修饰参与基因表达的调节。mRNA N6-甲基腺苷(m6A)修饰在非酒精性脂肪性肝病的发生、发展中发挥重要作用。甲基转移酶3抑制肝脏胰岛素敏感性并促进脂肪酸合成,去甲基化酶脂肪与肥胖相关蛋白(FTO)可通过改变脂代谢相关基因的表达以及增加氧化应激水平促进脂质蓄积,甲基化阅读蛋白通过m6A甲基化逆转FTO介导的脂肪生成。探讨m6A甲基化在非酒精性脂肪性肝病中的作用,对其诊断和治疗具有重要的指导意义。
Abstract:
As a core component of gene expression, RNA participates in the regulation of gene expression through transcription or post-transcriptional chemical modification during gene expression. mRNA N6-methyladenosine(m6A)modification plays an important role in the occurrence and development of nonalcoholic fatty liver disease. Methyltransferase-like 3 inhibits insulin sensitivity in liver and promotes fatty acid synthesis. Demethylases fat mass and obesity-associated gene(FTO)can promote lipid accumulation via changing the expression of lipid metabolism-related genes and increasing the level of oxidative stress. Methylation reading protein reverses FTO-mediated adipogenesis through m6A methylation. To explore the research progression of m6A methylation in nonalcoholic fatty liver disease is important for the clinical diagnosis and treatment of this disease.

参考文献/References:

[1] Eslam M,Sanyal AJ,George J,et al. MAFLD:a consensus-driven proposed nomenclature for metabolic associated fatty liver disease [J].Gastroenterology,2020,158(7):1999-2014.DOI:10.1053/j.gastro.2019.11.312.
[2] Friedman SL,Neuschwander-Tetri BA,Rinella M,et al. Mechanisms of NAFLD development and therapeutic strategies [J].Nat Med,2018,24(7):908-922.DOI:10.1038/s41591-018-0104-9.
[3] Eslam M,Valenti L,Romeo S. Genetics and epigenetics of NAFLD and NASH:clinical impact [J].J Hepatol,2018,68(2):268-279.DOI:10.1016/j.jhep.2017.09.003.
[4] Lyall MJ,Thomson JP,Cartier J,et al. Non-alcoholic fatty liver disease(NAFLD)is associated with dynamic changes in DNA hydroxymethylation [J].Epigenetics,2020,15(1-2):61-71.DOI:10.1080/15592294.2019.1649527.
[5] Niu B,He K,Li P,et al. SIRT1 upregulation protects against liver injury induced by a HFD through inhibiting CD36 and the NFkappaB pathway in mouse kupffer cells [J].Mol Med Rep,2018,18(2):1609-1615.DOI:10.3892/mmr.2018.9088.
[6] Jampoka K,Muangpaisarn P,Khongnomnan K,et al. Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease(NAFLD)[J].Microrna,2018,7(3):215-222.DOI:10.2174/2211536607666180531093302.
[7] Liu Z,Zhang J. Human C-to-U Coding RNA editing is largely nonadaptive [J].Mol Biol Evol,2018,35(4):963-969.DOI:10.1093/molbev/msy011.
[8] Schöller E,Weichmann F,Treiber T,et al. Interactions,localization,and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex [J].RNA,2018,24(4):499-512.DOI:10.1261/rna.064063.
[9] Bokar JA,Shambaugh ME,Polayes D,et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA(N6-adenosine)-methyltransferase [J].RNA,1997,3(11):1233-1247.
[10] Wang X,Feng J,Xue Y,et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex [J].Nature,2016,534(7608):575-578.DOI:10.1038/nature18298.
[11] Ping XL,Sun BF,Wang L,et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase [J].Cell Res,2014,24(2):177-189.DOI:10.1038/cr.2014.3.
[12] Ding C,Zou Q,Ding J,et al. Increased N6-methyladenosine causes infertility is associated with FTO expression [J].J Cell Physiol,2018,233(9):7055-7066.DOI:10.1002/jcp.26507.
[13] Su R,Dong L,Li C,et al. R-2HG Exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling [J].Cell,2018,172(1-2):90-105.DOI:10.1016/j.cell.2017.11.031.
[14] Xiang Y,Laurent B,Hsu CH,et al. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response [J].Nature,2017,543(7646):573-576.DOI:10.1038/nature21671.
[15] Shen DD,Suo FZ,Song QM,et al. Development of formaldehyde dehydrogenase-coupled assay and antibody-based assays for ALKBH5 activity evaluation [J].J Pharm Biomed Anal,2019,162:9-15.DOI:10.1016/j.jpba.2018.09.018.
[16] Shi H,Wang X,Lu Z,et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA [J].Cell Res,2017,27(3):315-328.DOI:10.1038/cr.2017.15.
[17] Xiao W,Adhikari S,Dahal U,et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing [J].Mol Cell,2016,61(4):507-519.DOI:10.1016/j.molcel.2016.01.012.
[18] Xie W,Ma LL,Xu YQ,et al. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism [J].Biochem Biophys Res Commun,2019,518(1):120-126.DOI:10.1016/j.bbrc.2019.08.018.
[19] Kobayashi M,Ohsugi M,Sasako T,et al. The RNA methyltransferase complex of WTAP,METTL3,and METTL14 regulates mitotic clonal expansion in adipogenesis [J].Mol Cell Biol,2018,38(16):e00116-e00118.DOI:10.1128/MCB.00116-18.
[20] Zhong X,Yu J,Frazier K,et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation [J].Cell Rep,2018,25(7):1816-1828.DOI:10.1016/j.celrep.2018.10.068.
[21] Guo J,Ren W,Li A,et al. Fat mass and obesity-associated gene enhances oxidative stress and lipogenesis in nonalcoholic fatty liver disease [J].Dig Dis Sci,2013,58(4):1004-1009.DOI:10.1007/s10620-012-2516-6.
[22] Lim A,Zhou J,Sinha RA,et al. Hepatic FTO expression is increased in NASH and its silencing attenuates palmitic acid-induced lipotoxicity [J].Biochem Biophys Res Commun,2016,479(3):476-481.DOI:10.1016/j.bbrc.2016.09.086.
[23] Chen J,Zhou X,Wu W,et al. FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice [J].J Physiol Biochem,2015,71(3):405-413.DOI:10.1007/s13105-015-0420-1.
[24] Kang H,Zhang Z,Yu L,et al. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation [J].J Cell Biochem,2018,119(7):5676-5685.DOI:10.1002/jcb.26746.
[25] Merkestein M,Laber S,McMurray F,et al. FTO influences adipogenesis by regulating mitotic clonal expansion [J].Nat Commun,2015,6:6792.DOI:10.1038/ncomms7792.
[26] Wu R,Liu Y,Yao Y,et al. FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism [J].Biochim Biophys Acta Mol Cell Biol Lipids,2018,1863(10):1323-1330.DOI:10.1016/j.bbalip.2018.08.008.
[27] Wu R,Yao Y,Jiang Q,et al. Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m(6)A-YTHDF2-dependent manner [J].Int J Obes(Lond),2018,42(7):1378-1388.DOI:10.1038/s41366-018-0082-5.
[28] Barati N,Momtazi-Borojeni AA,Majeed M,et al. Potential therapeutic effects of curcumin in gastric cancer [J].J Cell Physiol,2019,234(3):2317-2328.DOI:10.1002/jcp.27229.
[29] Lu N,Li X,Yu J,et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6)a RNA methylation in piglets [J].Lipids,2018,53(1):53-63.DOI:10.1002/lipd.12023.
[30] Zhang L,Qi Y,ALuo Z,et al. Betaine increases mitochondrial content and improves hepatic lipid metabolism [J].Food Funct,2019,10(1):216-223.DOI:10.1039/c8fo02004c.
[31] Xu L,Huang D,Hu Q,et al. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet [J].Br J Nutr,2015,113(12):1835-1843.DOI:10.1017/S0007114515001130.

相似文献/References:

[1]曹涵,曲伸.过氧化物酶体增殖物活化受体与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2014,(06):404.[doi:10.3760/cma.j.issn.1673-4157.2014.06.012]
 Cao Han,Qu Shen..Peroxisome proliferator-activated receptors and non-alcoholic fatty liver diseases[J].International Journal of Endocrinology and Metabolism,2014,(06):404.[doi:10.3760/cma.j.issn.1673-4157.2014.06.012]
[2]胡雅琴,包玉倩.维生素D对非酒精性脂肪性肝病的保护作用[J].国际内分泌代谢杂志,2014,(06):408.[doi:10.3760/cma.j.issn.1673-4157.2014.06.013]
 Hu Yaqin,Bao Yuqian..Protective effect of vitamin D on non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(06):408.[doi:10.3760/cma.j.issn.1673-4157.2014.06.013]
[3]聂秀玲,李明珍,孙丽荣.高尿酸血症与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2016,36(02):89.[doi:10.3760/cma.j.issn.1673-4157.2016.02.004]
 Nie Xiuling,Li Mingzhen,Sun Lirong..Hyperuricemia and non-alcoholic fatty liver[J].International Journal of Endocrinology and Metabolism,2016,36(06):89.[doi:10.3760/cma.j.issn.1673-4157.2016.02.004]
[4]张洁,邸阜生.运动防治非酒精性脂肪性肝病的机制[J].国际内分泌代谢杂志,2016,36(06):404.[doi:10.3760/cma.j.issn.1673-4157.2016.06.12]
 Zhang Jie,Di Fusheng..Mechanism of exercise on non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2016,36(06):404.[doi:10.3760/cma.j.issn.1673-4157.2016.06.12]
[5]张雅楠,郗光霞,杨翠萍,等.自噬在非酒精性脂肪性肝病中的变化及作用[J].国际内分泌代谢杂志,2017,37(01):11.[doi:10.3760/cma.j.issn.1673-4157.2017.01.03]
 Zhang Yanan*,Xi Guangxia,Yang Cuiping,et al.The change and function of autophagy in nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2017,37(06):11.[doi:10.3760/cma.j.issn.1673-4157.2017.01.03]
[6]李博,苏青.晚期糖基化终末产物及其受体与非酒精性脂肪性肝病的 关系[J].国际内分泌代谢杂志,2017,37(03):192.[doi:10.3760/cma.j.issn.1673-4157.2017.03.013]
 Li Bo,Su Qing..Relationship between advanced glycation end-products and its receptor in nonalcoholic fatty liver diseases[J].International Journal of Endocrinology and Metabolism,2017,37(06):192.[doi:10.3760/cma.j.issn.1673-4157.2017.03.013]
[7]狄红杰,刘超.饮食干预对非酒精性脂肪性肝病肠道菌群的影响[J].国际内分泌代谢杂志,2017,37(04):254.
 Di Hongjie,Liu Chao..Effects of diet interventions on gut microbiota of nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2017,37(06):254.
[8]林楚曼 林伟浩 周蕊 杨力.GLP-1缓解非酒精性脂肪性肝病相关信号通路的研究进展[J].国际内分泌代谢杂志,2018,38(03):179.[doi:10.3760/cma.j.issn.1673-4157.2018.03.009]
 Lin Chuman*,Lin Weihao,Zhou Rui,et al.The research progresses on GLP-1 related signal pathways in alleviating non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2018,38(06):179.[doi:10.3760/cma.j.issn.1673-4157.2018.03.009]
[9]李霞 雷涛.铁过载与代谢性疾病的关系[J].国际内分泌代谢杂志,2018,38(01):29.[doi:10.3760/cma.j.issn.1673-4157.2018.01.008]
 Li Xia*,Lei Tao..Relationship between iron overload and metabolic diseases[J].International Journal of Endocrinology and Metabolism,2018,38(06):29.[doi:10.3760/cma.j.issn.1673-4157.2018.01.008]
[10]曹白鸽 董艳.母体妊娠期高脂饮食所致的炎性反应状态对子代的影响[J].国际内分泌代谢杂志,2018,38(02):96.[doi:10.3760/cma.j.issn.1673-4157.2018.02.006]
 Cao Baige*,Dong Yan..Effects of inflammatory state on offspring induced by maternal high-fat diet during pregnancy[J].International Journal of Endocrinology and Metabolism,2018,38(06):96.[doi:10.3760/cma.j.issn.1673-4157.2018.02.006]

备注/Memo

备注/Memo:
通信作者:彭永德,Email: pengyongde0908@126.com
更新日期/Last Update: 2020-11-20