[1]任寒,王恺,丁元林,等.miR-375与2型糖尿病[J].国际内分泌代谢杂志,2014,(05):330-333.[doi:10.3760/cma.j.issn.1673-4157.2014.05.012]
 Ren Han*,Wang Kai,Ding Yuanlin,et al.Relationship between miR-375 and type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2014,(05):330-333.[doi:10.3760/cma.j.issn.1673-4157.2014.05.012]
点击复制

miR-375与2型糖尿病()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
期数:
2014年05期
页码:
330-333
栏目:
综述
出版日期:
2014-10-31

文章信息/Info

Title:
Relationship between miR-375 and type 2 diabetes mellitus
作者:
任寒王恺丁元林何玉清
523808 东莞,广东医学院(任寒),流行病与统计学教研室(丁元林),医学系统生物学研究所(何玉清); 98109 美国华盛顿州西雅图,美国系统生物学研究所(王恺)
Author(s):
Ren Han* Wang Kai Ding Yuanlin He Yuqing.
*Department of Epidemiology and Medical Statistics, Guangdong Medical College,Guangzhou 523808,China Corresponding author:Ding Yuanlin,Email:gdmcsbd@163.com,He Yuqing,Email:dr.hyq@hotmail.com
关键词:
2型糖尿病 miR-375 胰岛β细胞 胰岛素分泌 糖代谢
Keywords:
Type 2 diabetes mellitus miR-375 Islet β cell Insulin secretion Glucose metabolism
DOI:
10.3760/cma.j.issn.1673-4157.2014.05.012
摘要:
miR-375是一类特异性高表达于胰腺组织的非编码小RNA。研究表明,miR-375直接调控多种胰岛组织中特异性转录因子的表达, 参与调控多种基因及信号转导通路,影响糖、脂代谢,在2型糖尿病的发生、发展中起一定作用。miR-375对胰岛β细胞分化、胰岛素分泌及糖、脂代谢的调控作用可能为2型糖尿病的早期干预和治疗提供新方向。
Abstract:
miR-375 is a small non-coding RNA, which is highly expressed in islet tissue. Studies show that miR-375 could directly regulate the expression of a variety of specific transcription factor in pancreas and differentiation of islet beta cells,affect insulin secretion, modulate glucose and lipid metabolism, and involve in differentiation of adipocytes by regulating many genes and signal pathways, so it might play an important role in the mechanism of type 2 diabetes. In summary, the regulation of miR-375 on type 2 diabetes may provide a new direction for the early prevention and treatment of type 2 diabetes.

参考文献/References:

[1] Tomaselli S, Panera N, Gallo A, et al. Circulating miRNA profiling to identify biomarkers of dysmetabolism[J].Biomark Med, 2012,6(6):729-742.
[2] Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis[J].Cardiovasc Res, 2008,79(4):581-588.
[3] Kumar M, Nath S, Prasad HK, et al. MicroRNAs: a new ray of hope for diabetes mellitus[J].Protein Cell, 2012,3(10):726-738
[4] Tattikota S G, Rathjen T, Mcanulty S J, et al. Argonaute2 mediates compensatory expansion of the pancreatic β cell[J].Cell Metab, 2014,19(1):122-134.
[5] Xia HQ, Pan Y, Peng J, et al. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells[J].Mol Biol Rep, 2011,38(5):3061-3065.
[6] Bala S, Marcos M, Szabo G. Emerging role of microRNAs in liver diseases[J].World J Gastroenterol, 2009,15(45):5633-5640.
[7] Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma[J].Oncogene, 2007,26(30):4442-4452.
[8] Dehwah MA, Xu A, Huang Q. MicroRNAs and type 2 diabetes/obesity[J].J Genet Genomics, 2012,39(1):11-18.
[9] Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study[J].Acta Diabetol, 2011,48(1):61-69.
[10] Clelland M, Kantharidis P. microRNA in the development of diabetic complications[J].Clin Sci(Lond), 2014,126(2):95-110.
[11] Tsukamoto Y, Nakada C, Noguchi T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta[J].Cancer Res, 2010,70(6):2339-2349.
[12] Li Y, Jiang Q, Xia N, et al. Decreased expression of microRNA-375 in nonsmall cell lung Cancer and its clinical significance[J].J Int Med Res, 2012,40(5):1662-1669.
[13] Ling HY, Wen GB, Feng SD, et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling[J].Clin Exp Pharmacol Physiol, 2011,38(4):239-246.
[14] Choi D, Woo M. Executioners of apoptosis in pancreatic {beta}-cells: not just for cell death[J].Am J Physiol Endocrinol Metab, 2010,298(4):E735-E741.
[15] Wei R, Yang J, Liu GQ, et al. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells[J].Gene, 2013,518(2):246-255.
[16] Xu H, Tsang KS, Chan JC, et al. The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells[J].Cell Transplant, 2013,22(1):147-158.
[17] Koya V, Lu S, Sun YP, et al. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy[J].Diabetes, 2008,57(3):757-769.
[18] Wang S, Jensen JN, Seymour PA, et al. Sustained neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function[J].Proc Natl Acad Sci U S A, 2009,106(24):9715-9720.
[19] Schaffer AE, Taylor BL, Benthuysen JR, et al. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity[J].PLoS Genet, 2013,9(1):e1003274.
[20] Liu SH, Rao DD, Nemunaitis J, et al. PDX-1 is a therapeutic target for pancreatic Cancer, insulinoma and islet neoplasia using a novel RNA interference platform[J].PLoS One, 2012,7(8):e40452.
[21] Poy MN,Hausser J,Trajkovski M, et al. miR-375 maintains nor-mal pancreatic alphand beta-cell mass[J].Proc Natl Acad Sci U S A, 2009,106(14):5813-5818.
[22] Kinoshita T, Nohata N, Yoshino H, et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma[J].Int J Oncol, 2012,40(1):185-193.
[23] Vickers K C, Palmisano B T, Shoucri B M, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J].Nat Cell Biol, 2011,13(4):423-433.
[24] El Ouaamari A, Baroukh N, Martens GA, et al. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells[J].Diabetes, 2008,57(10):2708-2717.
[25] Arikoglu H, Ozdemir H, Kaya DE, et al. The adiponectin variants contribute to the genetic background of type 2 diabetes in Turkish population[J].Gene, 2014,534(1):10-16.
[26] Zampetaki A, Mayr M. MicroRNAs in vascular and metabolic disease[J].Circ Res, 2012,110(3):508-522.
[27] Li Y, Xu X, Liang Y, et al. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin(V1)protein expression[J].Int J Clin Exp Pathol, 2010,3(3):254-264.
[28] Wang Y, Huang C, Reddy Chintagari N, et al. miR-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting Wnt/β-catenin pathway[J].Nucleic Acids Res, 2013,41(6):3833-3844.
[29] Qin L, Chen Y, Niu Y, et al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway[J].BMC Genomics,2010,11:320.

相似文献/References:

[1]曾静波,王姮.2型糖尿病与自身免疫反应[J].国际内分泌代谢杂志,2007,(04):259.
[2]朱素君,谢锦桃,刘军,等.二甲双胍:2型糖尿病治疗的基础药[J].国际内分泌代谢杂志,2007,(04):280.
[3]刘艳清 易秋艳 邵加庆.肠道菌群与肥胖和糖尿病的关系[J].国际内分泌代谢杂志,2015,(01):31.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.01.007]
 Liu Yanqing,Yi Qiuyan,Shao Jiaqing..Relationship between gut microbiota, obesity and diabetes[J].International Journal of Endocrinology and Metabolism,2015,(05):31.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.01.007]
[4]姚旻 赵爱源 张宏.肠道菌群与2型糖尿病[J].国际内分泌代谢杂志,2015,(01):35.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.01.008]
 Yao Min*,Zhao Aiyuan,Zhang Hong..Relationship between gut microbiota and type 2 diabetes[J].International Journal of Endocrinology and Metabolism,2015,(05):35.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.01.008]
[5]赵丽娟,徐宽枫,杨涛,等.SLC30A8和PTPRD基因多态性与南京地区中老年人群2型糖尿病的相关性研究[J].国际内分泌代谢杂志,2015,(03):145.[doi:10.3760/cma.j.issn.1673-4157.2015.03.001]
 Zhao Lijuan*,Xu Kuanfeng,Yang Tao,et al.Relationship between SLC30A8 and PTPRD gene polymorphisms and type 2 diabetes in middle aged and elderly people in Nanjing area[J].International Journal of Endocrinology and Metabolism,2015,(05):145.[doi:10.3760/cma.j.issn.1673-4157.2015.03.001]
[6]王洁,何媛,于珮.糖尿病肾病的相关危险因素分析[J].国际内分泌代谢杂志,2015,(03):153.[doi:10.3760/cma.j.issn.1673-4157.2015.03.003]
 Wang Jie*,He Yuan,Yu Pei..Risk factors of diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(05):153.[doi:10.3760/cma.j.issn.1673-4157.2015.03.003]
[7]刘帅,张萍,方毅,等.2型糖尿病合并无症状冠状动脉钙化的相关危险因素分析[J].国际内分泌代谢杂志,2015,(03):158.[doi:10.3760/cma.j.issn.1673-4157.2015.03.004]
 Liu Shuai*,Zhang Ping,Fang Yi,et al.Analysis of the risk factors related with asymptomatic coronary calcification for type 2 diabetic patients[J].International Journal of Endocrinology and Metabolism,2015,(05):158.[doi:10.3760/cma.j.issn.1673-4157.2015.03.004]
[8]徐庆海,马颖,李铁马.2型糖尿病患者高甘油三酯血症-腰围表型与甲状腺功能异常的关系[J].国际内分泌代谢杂志,2015,(04):222.[doi:10.3760/cma.j.issn.1673-4157.2015.04.002]
 Xu Qinghai,Ma Ying,Li Tiema..Association of hypertriglyceridaemic-waist phenotype with thyroid dysfunction in patients with type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2015,(05):222.[doi:10.3760/cma.j.issn.1673-4157.2015.04.002]
[9]潘道延,沈洁,朱筱,等.利格列汀对2型糖尿病大鼠代谢性内毒素血症的影响[J].国际内分泌代谢杂志,2015,(04):230.[doi:10.3760/cma.j.issn.1673-4157.2015.04.004]
 Pan Daoyan,Shen Jie,Zhu Xiao,et al.Effects of linagliptin on metabolic endotoxemia in type 2 diabetic rats[J].International Journal of Endocrinology and Metabolism,2015,(05):230.[doi:10.3760/cma.j.issn.1673-4157.2015.04.004]
[10]黄桥,白洁,杜洪泉.一种新的脂肪细胞因子——cartonectin[J].国际内分泌代谢杂志,2015,(04):265.[doi:10.3760/cma.j.issn.1673-4157.2015.04.014]
 Huang Qiao*,Bai Jie,Du Hongquan..A novel adipokine--cartonectin[J].International Journal of Endocrinology and Metabolism,2015,(05):265.[doi:10.3760/cma.j.issn.1673-4157.2015.04.014]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81273166); 广东省自然科学基金资助项目(52012010008271); 东莞市科技计划医疗卫生单位科研重点项目(2012105102010); 东莞市高等院校科技计划项目(2012108102058); 广东医学院博士启动项目(B2011013); 广东医学院建博科技创新团队项目(STIF201121); 广东省教育厅科技创新项目(2013KJCX0089) 通信作者:丁元林,Email:gdmcsbd@163.com; 何玉清,Email:dr.hyq@
更新日期/Last Update: 2014-09-20