参考文献/References:
[1] Watson JD. Type 2 diabetes as a redox disease[J].Lancet,2014,383(9919):841-843. DOI:10.1016/S0140-6736(13)62365-X.
[2] Dumoutier L,Louahed J,Renauld JC.Cloning and characterization of IL-10-related T cell-derived inducible factor(IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9[J].J Immunol,2000,164(4):1814-1819.DOI:10.4049/jimmunol.164.4.1814.
[3] Dumoutier L,Van Roost E,Colau D,et al.Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor[J].Proc Natl Acad Sci U S A,2000,97(18):10144-10149.DOI:10.1073/pnas.170291697.
[4] Sabat R,Ouyang W,Wolk K.Therapeutic opportunities of the IL-22-IL-22R1 system[J].Nat Rev Drug Discov,2014,13(1):21-38.DOI:10.1038/nrd4176.
[5] Witte E,Witte K,Warszawska K,et al.Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection[J].Cytokine Growth Factor Rev,2010,21(5):365-379.DOI:10.1016/j.cytogfr.2010.08.002.
[6] Wolk K,Sabat R.Interleukin-22:a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells[J].Cytokine Growth Factor Rev,2006,17(5):367-380.DOI:10.1016/j.cytogfr.2006.09.001.
[7] Xie MH,Aggarwal S,Ho WH,et al.Interleukin(IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R[J].J Biol Chem,2000,275(40):31335-31339.DOI:10.1074/jbc.M005304200.
[8] Xu T,Logsdon NJ,Walter MR.Structure of insect-cell-derived IL-22[J].Acta Crystallogr D Biol Crystallogr,2005,61(Pt 7):942-950.DOI:10.1107/S0907444905009601.
[9] Dudakov JA,Hanash AM,van den Brink MR.Interleukin-22: immunobiology and pathology[J].Annu Rev Immunol,2015,33:747-785.DOI:10.1146/annurev-immunol-032414-112123.
[10] Wolk K,Witte E,Witte K,et al.Biology of interleukin-22[J].Semin Immunopathol,2010,32(1):17-31.DOI:10.1007/s00281-009-0188-x.
[11] Mühl H,Scheiermann P,Bachmann M,et al.IL-22 in tissue-protective therapy[J].Br J Pharmacol,2013,169(4):761-771.DOI:10.1111/bph.12196.
[12] Goldfine AB,Fonseca V,Jablonski KA,et al.The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial[J].Ann Intern Med,2010,152(6):346-357.DOI:10.7326/0003-4819-152-6-201003160-00004.
[13] Sonnenberg GF,Fouser LA,Artis D.Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces[J].Adv Immunol,2010,107:1-29.DOI:10.1016/B978-0-12-381300-8.00001-0.
[14] Zhao R,Tang D,Yi S,et al.Elevated peripheral frequencies of Th22 cells: a novel potent participant in obesity and type 2 diabetes[J].PLoS One,2014,9(1):e85770.DOI:10.1371/journal.pone.0085770.
[15] Gong F,Wu J,Zhou P,et al.Interleukin-22 might act as a double-edged sword in type 2 diabetes and coronary artery disease[J].Mediators Inflamm,2016,2016:8254797.DOI:10.1155/2016/8254797.
[16] Herder C,Kannenberg JM,Carstensen-Kirberg M,et al.Serum levels of interleukin-22, cardiometabolic risk factors and incident type 2 diabetes: KORA F4/FF4 study[J].Cardiovasc Diabetol,2017,16(1):17.DOI:10.1186/s12933-017-0498-6.
[17] Shen J,Fang Y,Zhu H,et al.Plasma interleukin-22 levels are associated with prediabetes and type 2 diabetes in the Han Chinese population[J].J Diabetes Investig,2018,9(1):33-38.DOI:10.1111/jdi.12640.
[18] Wang S,Li Y,Fan J,et al.Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation[J].Cell Death Dis,2017,8(7):e2937.DOI:10.1038/cddis.2017.292.
[19] Wang C,Wang L,Liu J,et al.Irisin modulates the association of interleukin-17A with the presence of non-proliferative diabetic retinopathy in patients with type 2 diabetes[J].Endocrine,2016,53(2):459-464.DOI:10.1007/s12020-016-0905-x.
[20] Wang X,Ota N,Manzanillo P,et al.Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes[J].Nature,2014,514(7521):237-241.DOI:10.1038/nature13564.
[21] Wunderlich CM,Hövelmeyer N,Wunderlich FT.Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity[J].JAKSTAT,2013,2(2):e23878. DOI:10.4161/jkst.23878.
[22] Hasnain SZ,Borg DJ,Harcourt BE,et al. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress[J].Nat Med,2014,20(12):1417-1426.DOI:10.1038/nm.3705.
[23] Hasnain SZ,Prins JB,McGuckin MA.Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes[J].J Mol Endocrinol,2016,56(2):R33-R54.DOI:10.1530/JME-15-0232.
[24] Hu M,Lin H,Yang L,et al.Interleukin-22 restored mitochondrial damage and impaired glucose-stimulated insulin secretion through down-regulation of uncoupling protein-2 in INS-1 cells[J].J Biochem,2017,161(5):433-439.DOI:10.1093/jb/mvw084.
[25] Hu M,Yang S,Yang L,et al.Interleukin-22 alleviated palmitate-induced endoplasmic reticulum stress in INS-1 cells through activation of autophagy[J].PLoS One,2016,11(1):e0146818.DOI:10.1371/journal.pone.0146818.
[26] Xuan X,Tian Z,Zhang M,et al.Diverse effects of interleukin-22 on pancreatic diseases[J].Pancreatology,2018,18(3):231-237.DOI:10.1016/j.pan.2018.02.014.
[27] Hill T,Krougly O,Nikoopour E,et al.The involvement of interleukin-22 in the expression of pancreatic beta cell regenerative Reg genes[J].Cell Regen(Lond),2013,2(1):2.DOI:10.1186/2045-9769-2-2.
[28] Borg DJ,Wang R,Murray L,et al.The effect of interleukin-22 treatment on autoimmune diabetes in the NOD mouse[J].Diabetologia,2017,60(11):2256-2261.DOI:10.1007/s00125-017-4392-2.
[29] Weber GF,Schlautkötter S,Kaiser-Moore S,et al.Inhibition of interleukin-22 attenuates bacterial load and organ failure during acute polymicrobial sepsis[J].Infect Immun,2007,75(4):1690-1697.DOI:10.1128/IAI.01564-06.
[30] 刘意,赵林双.白细胞介素22抗体抑制Snail1高表达对糖尿病肾病的影响[J]. 中国病理生理杂志,2018,34(5):939-944.DOI:10.3969/j.issn.1000-4718.2018.05.027.
[31] Chen H,Wen F,Zhang X,et al.Expression of T-helper-associated cytokines in patients with type 2 diabetes mellitus with retinopathy[J].Mol Vis,2012,18:219-226.
[32] Avitabile S,Odorisio T,Madonna S,et al.Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions[J].J Invest Dermatol,2015,135(11):2862-2870.DOI:10.1038/jid.2015.278.
相似文献/References:
[1]赵紫琴,雒瑢,田凤石,等.替米沙坦对OLETF大鼠皮下和内脏脂肪组织PPARγ表达的影响[J].国际内分泌代谢杂志,2014,(06):365.[doi:10.3760/cma.j.issn.1673-4157.2014.06.002]
Zhao Ziqin*,Luo Rong,Tian Fengshi,et al.Effects of telmisartan on expression of PPARγ in subcutaneous and visceral adipose tissue in OLETF rats[J].International Journal of Endocrinology and Metabolism,2014,(05):365.[doi:10.3760/cma.j.issn.1673-4157.2014.06.002]
[2]姚霜霜,张翼飞,张志国,等.小檗碱改善代谢性疾病的肠道相关机制[J].国际内分泌代谢杂志,2014,(06):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
Yao Shuangshuang,Zhang Yifei,Zhang Zhiguo,et al.The gut-related mechanisms of berberine in the treatment of metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(05):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
[3]曹萌 韦晓 刘超.自噬与胰岛β细胞功能及2型糖尿病[J].国际内分泌代谢杂志,2015,(01):53.[doi:10.3760/cma.j.issn.1673-4157.2015.01.013]
Cao Meng,Wei Xiao,Liu Chao..Relationship between autophagy and islet β cells function, type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2015,(05):53.[doi:10.3760/cma.j.issn.1673-4157.2015.01.013]
[4]刘艳 田秀标 韩颖.GLP-1受体激动剂呈葡萄糖依赖性刺激胰岛β细胞胰岛素分泌的机制[J].国际内分泌代谢杂志,2015,(01):66.[doi:10.3760/cma.j.issn.1673-4157.2015.01.017]
Liu Yan*,Tian Xiubiao,Han Ying..Mechanism of GLP-1 receptor agonists in the stimulation of insulin secretion of islet β cell in a glucose-dependent manner[J].International Journal of Endocrinology and Metabolism,2015,(05):66.[doi:10.3760/cma.j.issn.1673-4157.2015.01.017]
[5]齐利琴,刘礼斌.GLP-1在2型糖尿病诱发的阿尔茨海默病治疗中的作用[J].国际内分泌代谢杂志,2016,36(01):48.[doi:10.3760/cma.j.issn.1673-4157.2016.01.012]
Qi Liqin,Liu Libin..Effects of GLP-1 in the treatment of Alzheimer's disease induced by type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2016,36(05):48.[doi:10.3760/cma.j.issn.1673-4157.2016.01.012]
[6]梅稳,向光大,卢俊颜,等.GDF11对ApoE-/-糖尿病小鼠内皮依赖性
血管舒张功能的作用[J].国际内分泌代谢杂志,2016,36(02):101.[doi:10.3760/cma.j.issn.1673-4157.2016.02.007]
Mei Wen*,Xiang Guangda,Lu Junyan,et al.Effects of GDF11 on endothelium-dependent vasodiation function of aorta in ApoE-/- diabetic mice[J].International Journal of Endocrinology and Metabolism,2016,36(05):101.[doi:10.3760/cma.j.issn.1673-4157.2016.02.007]
[7]殷俏,张云良,郭淑芹,等.视黄醇结合蛋白4、超敏C反应蛋白
与糖尿病视网膜病变的关系[J].国际内分泌代谢杂志,2016,36(03):149.[doi:10.3760/cma.j.issn.1673-4157.2016.03.02]
Yin Qiao,Zhang Yunliang,Guo Shuqin,et al.Relationship of retinol binding protein 4 and high sensitive C-reactive protein with diabetic retinopathy[J].International Journal of Endocrinology and Metabolism,2016,36(05):149.[doi:10.3760/cma.j.issn.1673-4157.2016.03.02]
[8]王涛,张洁,祁范范,等.不同糖耐量人群血清25(OH)D3水平
及与胰岛β细胞功能的关系[J].国际内分泌代谢杂志,2016,36(04):226.[doi:10.3760/cma.j.issn.1673-4157.2016.04.04]
Wang Tao*,Zhang Jie,Qi Fanfan,et al.Relationship between serum 25(OH)D3 level and islet β cell function in individuals with different glucose tolerance[J].International Journal of Endocrinology and Metabolism,2016,36(05):226.[doi:10.3760/cma.j.issn.1673-4157.2016.04.04]
[9]陈双双,王楚媛,孔令芳.铬与2型糖尿病[J].国际内分泌代谢杂志,2016,36(04):272.[doi:10.3760/cma.j.issn.1673-4157.2016.04.13]
Chen Shuangshuang,Wang Chuyuan,Kong Lingfang.Chromium and type 2 diabetes[J].International Journal of Endocrinology and Metabolism,2016,36(05):272.[doi:10.3760/cma.j.issn.1673-4157.2016.04.13]
[10]涂萍,许婷,段鹏,等.25-羟维生素D3补充对绝经后2型糖尿病
患者胰岛素敏感性及血糖控制的影响[J].国际内分泌代谢杂志,2016,36(05):299.[doi:10.3760/cma.j.issn.1673-4157.2016.05.04]
Tu Ping,Xu Ting,Duan Peng,et al.Influence of 25-hydroxyvitamin D3 supplement on insulin sensitivity and glucose control in postmenopausal patients with type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2016,36(05):299.[doi:10.3760/cma.j.issn.1673-4157.2016.05.04]