[1]史俊奇 邹朝春.MicroRNA与肥胖[J].国际内分泌代谢杂志,2015,(05):344-347.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.014]
 Shi Junqi,Zou Chaochun..MicroRNA and obesity[J].International Journal of Endocrinology and Metabolism,2015,(05):344-347.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.05.014]
点击复制

MicroRNA与肥胖()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
期数:
2015年05期
页码:
344-347
栏目:
基础研究
出版日期:
2015-09-20

文章信息/Info

Title:
MicroRNA and obesity
作者:
史俊奇 邹朝春
310003 杭州,浙江大学医学院附属儿童医院内分泌科(第一作者现在杭州市第三人民医院)
Author(s):
Shi Junqi Zou Chaochun.
Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine,Hangzhou 310003, China
关键词:
MicroRNA 肥胖 脂肪
Keywords:
MicroRNA Obesity Adipose
DOI:
DOI:10.3760/cma.j.issn.1673-4157.2015.05.014
摘要:
近年来研究证明,脂肪组织和外周血中的microRNA参与了脂肪细胞分化、胰岛素抵抗、脂肪代谢等与肥胖发生密切相关的进程。MicroRNA影响肥胖的分子学机制逐步被发现,如通过增强或抑制相关基因表达从而调控与脂肪细胞增殖、分化相关的转录因子及信号分子等。对机制的研究,为今后肥胖及肥胖相关代谢性疾病的预警及治疗提供了新的手段。
Abstract:
Recent researches have proved that microRNA in adipose tissue and peripheral blood participates in the progress of adipocyte differentiation, insulin resistance, lipid metabolism and so on, which are closely associated with obesity. The molecular mechanisms of microRNA on obesity have been discovered step by step. For example, transcription factors and signaling molecules related to the multiplication and differentiation of adipocytes are regulated and controlled by enhancing or restraining of relevant gene expression. The investigation of the mechanisms provides a new approach for precaution and treatment of obesity and obesity-related metabolic diseases.

参考文献/References:

[1] McGregor RA, Choi MS. microRNAs in the regulation of adipogenesis and obesity [J]. Curr Mol Med, 2011, 11(4): 304-316. [/br][2] Keller J, Ringseis R, Eder K. Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats [J]. BMC Genomics, 2014, 15: 512. [/br][3] Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals [J]. Nat Rev Mol Cell Biol, 2009, 10(2): 126-139. [/br][4] Carolan E, Hogan AE, Corrigan M, et al. The impact of childhood obesity on inflammation, innate immune cell frequency, and metabolic microRNA expression [J]. J Clin Endocrinol Metab, 2014, 99(3): E474-E478. [/br][5] Chen WJ, Zhang M, Zhao GJ, et al. MicroRNA-33 in atherosclerosis etiology and pathophysiology[J].Atherosclerosis, 2013, 227(2): 201-208. [/br][6] Wang R, Hong J, Cao Y, et al. Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults [J]. Eur J Endocrinol, 2015, 172(3): 291-300. [/br][7] Kilic ID, Dodurga Y, Uludag B, et al. MicroRNA -143 and -223 in obesity [J]. Gene, 2015, 560(2): 140-142. [/br][8] Wang YC, Li Y, Wang XY, et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity[J]. Diabetologia, 2013, 56(10): 2275-2285. [/br][9] Ortega FJ, Mercader JM, Catalán V, et al. Targeting the circulating microRNA signature of obesity [J]. Clin Chem, 2013, 59(5): 781-792. [/br][10] Prats-Puig A, Ortega FJ, Mercader JM, et al. Changes in circulating microRNAs are associated with childhood obesity[J].J Clin Endocrinol Metab, 2013, 98(10): E1655-E1660. [/br][11] Jeong BC, Kang IH, Hwang YC, et al. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression [J].Cell Death Dis, 2014, 5:e1532. [/br][12] Yun UJ, Song NJ, Yang DK, et al. MiR-195a inhibits adipocyte differentiation by targeting the preadipogenic determinator Zfp423 [J]. J Cell Biochem, 2015,[Epub ahead of print]. [/br][13] Takanabe R, Ono K, Abe Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet [J]. Biochem Biophys Res Commun, 2008, 376(4): 728-732. [/br][14] Kim YJ, Hwang SH, Cho HH, et al. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues [J]. J Cell Physiol, 2012, 227(1): 183-193. [/br][15] Kim YJ, Hwang SJ, Bae YC, et al. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue [J]. Stem Cells, 2009, 27(12): 3093-3102. [/br][16] Qin L, Chen Y, Niu Y, et al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway[J]. BMC Genomics, 2010, 11:320. [/br][17] Ling HY, Wen GB, Feng SD, et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling [J]. Clin Exp Pharmacol Physiol, 2011, 38(4): 239-246. [/br][18] Liang WC, Wang Y, Liang PP, et al. MiR-25 suppresses 3T3-L1 adipogenesis by directly targeting KLF4 and C/EBPalpha [J]. J Cell Biochem, 2015,[Epub ahead of print]. [/br][19] Lin Q, Gao Z, Alarcon RM, et al. A role of miR-27 in the regulation of adipogenesis[J].FEBS J, 2009, 276(8): 2348-2358. [/br][20] Bork S, Horn P, Castoldi M, et al. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371[J].J Cell Physiol, 2011, 226(9): 2226-2234. [/br][21] Sun L, Xie H, Mori MA, et al. Mir193b-365 is essential for brown fat differentiation [J]. Nat Cell Biol, 2011, 13(8): 958-965. [/br][22] Trajkovski M, Ahmed K, Esau CC, et al. MyomiR-133 regulates brown fat differentiation through Prdm16[J].Nat Cell Biol, 2012, 14(12): 1330-1335. [/br][23] Mori M, Nakagami H, Rodriguez-Araujo G, et al. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells [J]. PLoS Biol, 2012, 10(4): e1001314. [/br][24] Martinelli R, Nardelli C, Pilone V, et al. miR-519d overexpression is associated with human obesity[J].Obesity(Silver Spring), 2010, 18(11): 2170-2176. [/br][25] Meerson A, Traurig M, Ossowski V, et al. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α[J].Diabetologia, 2013, 56(9): 1971-1979. [/br][26] Yeh CL, Cheng IC, Hou YC, et al. MicroRNA-125a-3p expression in abdominal adipose tissues is associated with insulin signalling gene expressions in morbid obesity: observations in Taiwanese [J]. Asia Pac J Clin Nutr, 2014, 23(2): 331-337.

相似文献/References:

[1]曹琳,杨昱,刘超.减重手术对多囊卵巢综合征的治疗作用[J].国际内分泌代谢杂志,2014,(06):415.[doi:10.3760/cma.j.issn.1673-4157.2014.06.015]
 Cao Lin,Yang Yu,Liu Chao..Therapeutic effects of bariatric surgery on polycystic ovary syndrome[J].International Journal of Endocrinology and Metabolism,2014,(05):415.[doi:10.3760/cma.j.issn.1673-4157.2014.06.015]
[2]李素芬,韩颖,石节丽,等.MicroRNAs对胰岛β细胞功能的影响[J].国际内分泌代谢杂志,2015,(03):193.[doi:10.3760/cma.j.issn.1673-4157.2015.03.014]
 Li Sufen,Han Ying,Shi Jieli,et al.Effects of microRNAs on islet β cell function[J].International Journal of Endocrinology and Metabolism,2015,(05):193.[doi:10.3760/cma.j.issn.1673-4157.2015.03.014]
[3]张莎莎,孟杰杰,沈桂芬,等.肌肉生长抑制素前肽基因干预对高脂饮食诱导的肥胖小鼠脂代谢的影响[J].国际内分泌代谢杂志,2014,(06):361.[doi:10.3760/cma.j.issn.1673-4157.2014.06.001]
 Zhang Shasha*,Meng Jiejie,Shen Guifen,et al.Effects of myostatin propeptide gene intervention on dyslipidemia in high fat diet-induced obese mice[J].International Journal of Endocrinology and Metabolism,2014,(05):361.[doi:10.3760/cma.j.issn.1673-4157.2014.06.001]
[4]李晏丽,宁光.microRNA与胰岛素抵抗[J].国际内分泌代谢杂志,2014,(03):188.[doi:10.3760/cma.j.issn.1673-4157.2014.03.012]
 Li Yanli,Ning Guang..Relationship between microRNA and insulin resistance[J].International Journal of Endocrinology and Metabolism,2014,(05):188.[doi:10.3760/cma.j.issn.1673-4157.2014.03.012]
[5]郝圆圆,张婷婷,袁红网,等.增食欲素干预单纯性肥胖的作用及机制[J].国际内分泌代谢杂志,2014,(05):324.[doi:10.3760/cma.j.issn.1673-4157.2014.05.010]
 Hao Yuanyuan,Zhang Tingting,Yuan Hongwang,et al.Effects of orexin on obesity and its mechanism[J].International Journal of Endocrinology and Metabolism,2014,(05):324.[doi:10.3760/cma.j.issn.1673-4157.2014.05.010]
[6]张如意 张桦 王娇 孙嘉 陈容平 杨锐 冉建民 陈宏.超重或肥胖2型糖尿病患者糖尿病足的 患病率及相关危险因素分析[J].国际内分泌代谢杂志,2015,(06):365.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.06.002]
 Zhang Ruyi*,Zhang Hua,Wang Jiao,et al.Prevalence and risk factors for diabetic foot in overweight or obese type 2 diabetic patients[J].International Journal of Endocrinology and Metabolism,2015,(05):365.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.06.002]
[7]刘剑 吴明昊 高宇.高脂饮食影响消化系统致肥胖的机制[J].国际内分泌代谢杂志,2015,(06):402.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.06.011]
 Liu Jian*,Wu Minghao,Gao Yu..The mechanism of obesity caused by disturbance of high fat diets on gastrointestinal system[J].International Journal of Endocrinology and Metabolism,2015,(05):402.[doi:DOI:10.3760/cma.j.issn.1673-4157.2015.06.011]
[8]张琳,费雯婕,宋光耀.网膜素与代谢综合征[J].国际内分泌代谢杂志,2016,36(01):42.[doi:10.3760/cma.j.issn.1673-4157.2016.01.010]
 Zhang Lin*,Fei Wenjie,Song Guangyao..Omentin and metabolic syndrome[J].International Journal of Endocrinology and Metabolism,2016,36(05):42.[doi:10.3760/cma.j.issn.1673-4157.2016.01.010]
[9]谢绍锋,黄莉吉,王昆,等.南京市城区40岁以上人群超重、肥胖流行 特点调查分析[J].国际内分泌代谢杂志,2016,36(03):145.[doi:10.3760/cma.j.issn.1673-4157.2016.03.01]
 Xie Shaofeng*,Huang Liji,Wang Kun,et al.Epidemiological investigation of overweight and obesity in population aged 40 years or older in Nanjing City[J].International Journal of Endocrinology and Metabolism,2016,36(05):145.[doi:10.3760/cma.j.issn.1673-4157.2016.03.01]
[10]杨曦,刘玉洁,马慧娟.C1q/肿瘤坏死因子相关蛋白12与糖代谢[J].国际内分泌代谢杂志,2016,36(03):195.[doi:10.3760/cma.j.issn.1673-4157.2016.03.13]
 Yang Xi*,Liu Yujie,Ma Huijuan..C1q/tumor necrosis factor-related protein 12 and glucose metabolism[J].International Journal of Endocrinology and Metabolism,2016,36(05):195.[doi:10.3760/cma.j.issn.1673-4157.2016.03.13]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81170787); 浙江省卫生和计划生育委员会项目(WKJ2011-2-008,2009B098); 浙江省卫生高层次创新人才培养工程项目(2015) 作者单位:310003 杭州,浙江大学医学院附属儿童医院内分泌科(第一作者现在杭州市第三人民医院) 通信作者:邹朝春,Email:zcc14@zju.edu.cn
更新日期/Last Update: 2015-09-20