参考文献/References:
[1] Torres JL,Novo-Veleiro I,Manzanedo L,et al.Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J].World J Gastroenterol,2018,24(36):4104-4118.DOI:10.3748/wjg.v24.i36.4104.
[2] Younossi Z,Anstee QM,Marietti M,et al.Global burden of NAFLD and NASH:trends, predictions,risk factors and prevention[J].Nat Rev Gastroenterol Hepatol,2018,15(1):11-20.DOI:10.1038/nrgastro.2017.109.
[3] Pérez-Carreras M,Del Hoyo P,Martín MA,et al.Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis[J].Hepatology,2003,38(4):999-1007.DOI:10.1053/jhep.2003.50398.
[4] Mikhed Y,Daiber A,Steven S.Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction[J].Int J Mol Sci,2015,16(7):15918-15953.DOI:10.3390/ijms160715918.
[5] Tilg H,Moschen AR.Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J].Hepatology,2010,52(5):1836-1846. DOI:10.1002/hep.24001.
[6] Gusdon AM,Song KX,Qu S.Nonalcoholic fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective[J].Oxid Med Cell Longev,2014,2014:637027.DOI:10.1155/2014/637027.
[7] Ao N,Yang J,Wang X,et al.Glucagon-like peptide-1 preserves non-alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stress-associated pathway[J].Hepatol Res,2016,46(4):343-353.DOI:10.1111/hepr.12551.
[8] Pessayre D,Fromenty B.NASH:a mitochondrial disease[J].J Hepatol,2005,42(6):928-940.DOI:10.1016/j.jhep.2005.03.004.
[9] Cheng Y,Mai J,Hou T,et al.MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3[J].Biochem Biophys Res Commun,2016,474(1):57-63.DOI:10.1016/j.bbrc.2016.04.065.
[10] Ji J,Qin Y,Ren J,et al.Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN[J].Sci Rep,2015,5:16262.DOI:10.1038/srep16262.
[11] Zhang T,Hu J,Wang X,et al.MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway[J].J Hepatol,2019,70(1):87-96.DOI:10.1016/j.jhep.2018.08.026.
[12] Poeta M,Pierri L,Vajro P. Gut-liver axis derangement in non-alcoholic fatty liver disease[J].Children(Basel),2017,4(8):pii: E66.DOI:10.3390/children4080066.
[13] Miao C,Xie Z,Chang J.Critical roles of microRNAs in the pathogenesis of fatty liver: new advances, challenges, and potential directions[J].Biochem Genet,2018,56(5):423-449.DOI:10.1007/s10528-018-9870-9.
[14] Wei Y,Rector RS,Thyfault JP,et al.Nonalcoholic fatty liver disease and mitochondrial dysfunction[J].World J Gastroenterol,2008,14(2):193-199. DOI:10.3748/wjg.14.193.
[15] Zhang T,Zhao X,Steer CJ,et al.A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet[J].Metabolism,2018,85:183-191.DOI: 10.1016/j.metabol.2018.03.023.
[16] Kurtz CL,Peck BC,Fannin EE,et al.MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes[J].Diabetes,2014,63(9):3141-3148. DOI:10.2337/db13-1015.
[17] el Azzouzi H,Leptidis S,Dirkx E,et al.The hypoxia-inducible microRNA cluster miR-199a 214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation[J].Cell Metab,2013,18(3):341-354.DOI:10.1016/j.cmet.2013.08.009.
[18] Rodrigues PM,Afonso MB,Sima~o AL,et al.miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice[J].Cell Death Dis,2017,8(4):e2748. DOI:10.1038/cddis.2017.172.
[19] Wan GX,Cheng L,Qin HL,et al.MiR-15b-5p is involved in doxorubicin-induced cardiotoxicity via inhibiting bmpr1a signal in H9c2 cardiomyocyte[J].Cardiovasc Toxicol,2019,19(3):264-275.DOI:10.1007/s12012-018-9495-6.
[20] Sun X,Li X,Ma S,et al.MicroRNA-98-5p ameliorates oxygen-glucose deprivation/reoxygenation(OGD/R)-induced neuronal injury by inhibiting Bach1 and promoting Nrf2/ARE signaling[J].Biochem Biophys Res Commun,2018,507(1-4):114-121.DOI:10.1016/j.bbrc.2018.10.182.
[21] Elhanati S,Ben-Hamo R,Kanfi Y,et al.Reciprocal regulation between SIRT6 and miR-122 controls liver metabolism and predicts hepatocarcinoma prognosis[J].Cell Rep,2016,14(2):234-242.DOI:10.1016/j.celrep.2015.12.023.
[22] Dongiovanni P,Meroni M,Longo M,et al.miRNA signature in NAFLD: a turning point for a non-invasive diagnosis[J].Int J Mol Sci,2018,19(12):pii:E3966.DOI:10.3390/ijms19123966.
[23] Mosedale M,Eaddy JS,Trask OJ Jr,et al.miR-122 release in exosomes precedes overt tolvaptan-induced necrosis in a primary human hepatocyte micropatterned coculture model[J].Toxicol Sci,2018,161(1):149-158.DOI:10.1093/toxsci/kfx206.
[24] Lim E,Lim JY,Kim E,et al.Xylobiose, an alternative sweetener, ameliorates diabetes-related metabolic changes by regulating hepatic lipogenesis and miR-122a/33a in db/db mice[J].Nutrients,2016,8(12):pii: E791.DOI: 10.3390/nu8120791.
[25] Jagannathan R,Thapa D,Nichols CE,et al.Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart[J].Circ Cardiovasc Genet,2015,8(6):785-802.DOI:10.1161/CIRCGENETICS.115.001067.
[26] Das S,Bedja D,Campbell N,et al.miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo[J].PLoS One,2014,9(5):e96820.DOI:10.1371/journal.Xpone.0096820.
[27] Dragomir MP,Knutsen E,Calin GA.SnapShot: unconventional miRNA functions[J].Cell,2018,174(4):1038-1038.e1.DOI:10.1016/j.cell.2018.07.040.
[28] Bandiera S,Rüberg S,Girard M,et al.Nuclear outsourcing of RNA interference components to human mitochondria[J].PLoS One,2011,6(6):e20746.DOI:10.1371/journal.pone.0020746.
[29] Ding J,Li M,Wan X,et al.Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease[J].Sci Rep,2015,5:13729.DOI:10.1038/srep13729.
[30] He S,Guo W,Deng F,et al.Targeted delivery of microRNA 146b mimic to hepatocytes by lactosylated PDMAEMA nanoparticles for the treatment of NAFLD[J].Artif Cells Nanomed Biotechnol,2018,46(Suppl 2):217-228.DOI:10.1080/21691401.2018.1453830.
相似文献/References:
[1]张晓燕,陈莉明.儿童非酒精性脂肪性肝病研究进展[J].国际内分泌代谢杂志,2007,(04):289.
[2]贺肴,张弛,刘瑛,等.代谢正常肥胖合并非酒精性脂肪性肝病的临床特征及内皮功能研究[J].国际内分泌代谢杂志,2015,(03):163.[doi:10.3760/cma.j.issn.1673-4157.2015.03.005]
He Yao,Zhang Chi,Liu Ying,et al.Clinical features and endothelial function in metabolically healthy obese patients with nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2015,(05):163.[doi:10.3760/cma.j.issn.1673-4157.2015.03.005]
[3]邵金双,邸阜生.网膜素抗炎作用及与代谢相关疾病的关系[J].国际内分泌代谢杂志,2014,(01):29.[doi:10.3760/cma.j.issn.1673-4157.2014.01.008]
Shao Jinshuang*,Di Fusheng ..Anti-inflammatory effect of omentin and its relationship with metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(05):29.[doi:10.3760/cma.j.issn.1673-4157.2014.01.008]
[4]王兴纯,曲伸.胰高血糖素样肽-1受体激动剂与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2014,(01):40.[doi:10.3760/cma.j.issn.1673-4157.2014.01.011]
Wang Xingchun*,Qu Shen.Glucagon like peptide-1 receptor agonist and nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):40.[doi:10.3760/cma.j.issn.1673-4157.2014.01.011]
[5]黄玥晔,曲伸.甲状腺激素受体:非酒精性脂肪性肝病的新靶点[J].国际内分泌代谢杂志,2014,(01):43.[doi:10.3760/cma.j.issn.1673-4157.2014.01.012]
Huang Yueye,Qu Shen.Thyroid hormone receptor:a new target of nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):43.[doi:10.3760/cma.j.issn.1673-4157.2014.01.012]
[6]蔡芸莹,苏恒.DPP-4在脂质代谢及非酒精性脂肪性肝病中的作用研究[J].国际内分泌代谢杂志,2014,(02):112.[doi:10.3760/cma.j.issn.1673-4157.2014.02.012]
Cai Yun-ying,Su Heng..Effects of dipeptidyl peptidase-4 on lipid metabolism and nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):112.[doi:10.3760/cma.j.issn.1673-4157.2014.02.012]
[7]李爱玲,谢云,李瑾,等.体重指数和腰臀比预测非酒精性脂肪性肝病发病风险的比较[J].国际内分泌代谢杂志,2014,(02):135.[doi:10.3760/cma.j.issn.1673-4157.2014.02.018]
Li Ailing,Xie Yun,Li Jin,et al.Comparison of body mass index and waist-to-hip ratio for predicting of non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):135.[doi:10.3760/cma.j.issn.1673-4157.2014.02.018]
[8]冯静,魏亚聪,刘超,等.SIRT3与胰岛素抵抗[J].国际内分泌代谢杂志,2017,37(05):337.
Feng Jing,Wei Yacong,Liu Chao,et al.SIRT3 and insulin resistance[J].International Journal of Endocrinology and Metabolism,2017,37(05):337.
[9]钟祯 张霄旦 李万根.内质网与线粒体相互作用在糖尿病心肌病中的作用[J].国际内分泌代谢杂志,2019,39(01):57.[doi:10.3760/cma.j.issn.1673-4157.2019.01.014]
Zhong Zhen,Zhang Xiaodan,Li Wangen.Roles of the interactions between endoplasmic reticulum and mitochondria in diabetic cardiomyopathy[J].International Journal of Endocrinology and Metabolism,2019,39(05):57.[doi:10.3760/cma.j.issn.1673-4157.2019.01.014]
[10]张贺 杨立英 黄雯莉 王文昭 陈素凤 任路平.长链非编码RNA与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2020,40(04):241.[doi:10.3760/cma.j.issn.1673-4157.2020.04.006]
Zhang He,Yang Liying,Huang Wenli,et al.Long non-coding RNA and non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2020,40(05):241.[doi:10.3760/cma.j.issn.1673-4157.2020.04.006]