[1]马卓奇 敖娜 都健.线粒体相关microRNA在非酒精性脂肪性肝病中的研究进展[J].国际内分泌代谢杂志,2019,39(05):307-310,314.[doi:10.3760/cma.j.issn.1673-4157.2019.05.005]
 Ma Zhuoqi,Ao Na,Du Jian.Research progress of mitochondria-related microRNA in non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2019,39(05):307-310,314.[doi:10.3760/cma.j.issn.1673-4157.2019.05.005]
点击复制

线粒体相关microRNA在非酒精性脂肪性肝病中的研究进展()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
39
期数:
2019年05期
页码:
307-310,314
栏目:
综述
出版日期:
2019-09-20

文章信息/Info

Title:
Research progress of mitochondria-related microRNA in non-alcoholic fatty liver disease
作者:
马卓奇 敖娜 都健
中国医科大学附属第四医院内分泌代谢内科,沈阳 110032
Author(s):
Ma Zhuoqi Ao Na Du Jian
Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
关键词:
非酒精性脂肪性肝病 线粒体 线粒体相关miRNA
Keywords:
Non-alcoholic fatty liver disease Mitochondria Mitochondria-related miRNA
DOI:
10.3760/cma.j.issn.1673-4157.2019.05.005
摘要:
线粒体功能障碍可导致肝脏胰岛素抵抗、脂肪改变及氧化应激等,从而参与非酒精性脂肪性肝病(NAFLD)的发病。近年来研究发现,microRNA(miRNA)可调控多种生物功能,与包括NAFLD在内的多种疾病有关,而其中的线粒体相关miRNA可能通过调控细胞因子、脂肪酸氧化、线粒体复合物、氧化应激等,导致线粒体功能障碍,从而参与NAFLD的发生、发展。目前尚无针对NAFLD的有效治疗,线粒体相关miRNA与NAFLD的研究表明其可能为NAFLD的诊断、治疗提供一个新的方向。
Abstract:
Mitochondrial dysfunction is involved in the pathogenesis of non-alcoholic fatty liver disease(NAFLD)by causing insulin resistance, fat changes and oxidative stress in the liver. Recent studies have shown that microRNA(miRNA)can regulate a variety of biological functions and is related to a variety of diseases including NAFLD, which is caused by mitochondria-related miRNA through regulation of cytokines, fatty acid oxidation, mitochondrial complex and oxidative stress. Until now, no therapeutic treatments have proven effective for the treatment of NAFLD. However,the studies of mitochondria-related miRNA in NAFLD suggest that it may provide a new direction for the diagnosis and treatment of NAFLD.

参考文献/References:

[1] Torres JL,Novo-Veleiro I,Manzanedo L,et al.Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J].World J Gastroenterol,2018,24(36):4104-4118.DOI:10.3748/wjg.v24.i36.4104.
[2] Younossi Z,Anstee QM,Marietti M,et al.Global burden of NAFLD and NASH:trends, predictions,risk factors and prevention[J].Nat Rev Gastroenterol Hepatol,2018,15(1):11-20.DOI:10.1038/nrgastro.2017.109.
[3] Pérez-Carreras M,Del Hoyo P,Martín MA,et al.Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis[J].Hepatology,2003,38(4):999-1007.DOI:10.1053/jhep.2003.50398.
[4] Mikhed Y,Daiber A,Steven S.Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction[J].Int J Mol Sci,2015,16(7):15918-15953.DOI:10.3390/ijms160715918.
[5] Tilg H,Moschen AR.Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J].Hepatology,2010,52(5):1836-1846. DOI:10.1002/hep.24001.
[6] Gusdon AM,Song KX,Qu S.Nonalcoholic fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective[J].Oxid Med Cell Longev,2014,2014:637027.DOI:10.1155/2014/637027.
[7] Ao N,Yang J,Wang X,et al.Glucagon-like peptide-1 preserves non-alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stress-associated pathway[J].Hepatol Res,2016,46(4):343-353.DOI:10.1111/hepr.12551.
[8] Pessayre D,Fromenty B.NASH:a mitochondrial disease[J].J Hepatol,2005,42(6):928-940.DOI:10.1016/j.jhep.2005.03.004.
[9] Cheng Y,Mai J,Hou T,et al.MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3[J].Biochem Biophys Res Commun,2016,474(1):57-63.DOI:10.1016/j.bbrc.2016.04.065.
[10] Ji J,Qin Y,Ren J,et al.Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN[J].Sci Rep,2015,5:16262.DOI:10.1038/srep16262.
[11] Zhang T,Hu J,Wang X,et al.MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway[J].J Hepatol,2019,70(1):87-96.DOI:10.1016/j.jhep.2018.08.026.
[12] Poeta M,Pierri L,Vajro P. Gut-liver axis derangement in non-alcoholic fatty liver disease[J].Children(Basel),2017,4(8):pii: E66.DOI:10.3390/children4080066.
[13] Miao C,Xie Z,Chang J.Critical roles of microRNAs in the pathogenesis of fatty liver: new advances, challenges, and potential directions[J].Biochem Genet,2018,56(5):423-449.DOI:10.1007/s10528-018-9870-9.
[14] Wei Y,Rector RS,Thyfault JP,et al.Nonalcoholic fatty liver disease and mitochondrial dysfunction[J].World J Gastroenterol,2008,14(2):193-199. DOI:10.3748/wjg.14.193.
[15] Zhang T,Zhao X,Steer CJ,et al.A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet[J].Metabolism,2018,85:183-191.DOI: 10.1016/j.metabol.2018.03.023.
[16] Kurtz CL,Peck BC,Fannin EE,et al.MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes[J].Diabetes,2014,63(9):3141-3148. DOI:10.2337/db13-1015.
[17] el Azzouzi H,Leptidis S,Dirkx E,et al.The hypoxia-inducible microRNA cluster miR-199a 214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation[J].Cell Metab,2013,18(3):341-354.DOI:10.1016/j.cmet.2013.08.009.
[18] Rodrigues PM,Afonso MB,Simao AL,et al.miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice[J].Cell Death Dis,2017,8(4):e2748. DOI:10.1038/cddis.2017.172.
[19] Wan GX,Cheng L,Qin HL,et al.MiR-15b-5p is involved in doxorubicin-induced cardiotoxicity via inhibiting bmpr1a signal in H9c2 cardiomyocyte[J].Cardiovasc Toxicol,2019,19(3):264-275.DOI:10.1007/s12012-018-9495-6.
[20] Sun X,Li X,Ma S,et al.MicroRNA-98-5p ameliorates oxygen-glucose deprivation/reoxygenation(OGD/R)-induced neuronal injury by inhibiting Bach1 and promoting Nrf2/ARE signaling[J].Biochem Biophys Res Commun,2018,507(1-4):114-121.DOI:10.1016/j.bbrc.2018.10.182.
[21] Elhanati S,Ben-Hamo R,Kanfi Y,et al.Reciprocal regulation between SIRT6 and miR-122 controls liver metabolism and predicts hepatocarcinoma prognosis[J].Cell Rep,2016,14(2):234-242.DOI:10.1016/j.celrep.2015.12.023.
[22] Dongiovanni P,Meroni M,Longo M,et al.miRNA signature in NAFLD: a turning point for a non-invasive diagnosis[J].Int J Mol Sci,2018,19(12):pii:E3966.DOI:10.3390/ijms19123966.
[23] Mosedale M,Eaddy JS,Trask OJ Jr,et al.miR-122 release in exosomes precedes overt tolvaptan-induced necrosis in a primary human hepatocyte micropatterned coculture model[J].Toxicol Sci,2018,161(1):149-158.DOI:10.1093/toxsci/kfx206.
[24] Lim E,Lim JY,Kim E,et al.Xylobiose, an alternative sweetener, ameliorates diabetes-related metabolic changes by regulating hepatic lipogenesis and miR-122a/33a in db/db mice[J].Nutrients,2016,8(12):pii: E791.DOI: 10.3390/nu8120791.
[25] Jagannathan R,Thapa D,Nichols CE,et al.Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart[J].Circ Cardiovasc Genet,2015,8(6):785-802.DOI:10.1161/CIRCGENETICS.115.001067.
[26] Das S,Bedja D,Campbell N,et al.miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo[J].PLoS One,2014,9(5):e96820.DOI:10.1371/journal.Xpone.0096820.
[27] Dragomir MP,Knutsen E,Calin GA.SnapShot: unconventional miRNA functions[J].Cell,2018,174(4):1038-1038.e1.DOI:10.1016/j.cell.2018.07.040.
[28] Bandiera S,Rüberg S,Girard M,et al.Nuclear outsourcing of RNA interference components to human mitochondria[J].PLoS One,2011,6(6):e20746.DOI:10.1371/journal.pone.0020746.
[29] Ding J,Li M,Wan X,et al.Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease[J].Sci Rep,2015,5:13729.DOI:10.1038/srep13729.
[30] He S,Guo W,Deng F,et al.Targeted delivery of microRNA 146b mimic to hepatocytes by lactosylated PDMAEMA nanoparticles for the treatment of NAFLD[J].Artif Cells Nanomed Biotechnol,2018,46(Suppl 2):217-228.DOI:10.1080/21691401.2018.1453830.

相似文献/References:

[1]张晓燕,陈莉明.儿童非酒精性脂肪性肝病研究进展[J].国际内分泌代谢杂志,2007,(04):289.
[2]贺肴,张弛,刘瑛,等.代谢正常肥胖合并非酒精性脂肪性肝病的临床特征及内皮功能研究[J].国际内分泌代谢杂志,2015,(03):163.[doi:10.3760/cma.j.issn.1673-4157.2015.03.005]
 He Yao,Zhang Chi,Liu Ying,et al.Clinical features and endothelial function in metabolically healthy obese patients with nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2015,(05):163.[doi:10.3760/cma.j.issn.1673-4157.2015.03.005]
[3]邵金双,邸阜生.网膜素抗炎作用及与代谢相关疾病的关系[J].国际内分泌代谢杂志,2014,(01):29.[doi:10.3760/cma.j.issn.1673-4157.2014.01.008]
 Shao Jinshuang*,Di Fusheng ..Anti-inflammatory effect of omentin and its relationship with metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(05):29.[doi:10.3760/cma.j.issn.1673-4157.2014.01.008]
[4]王兴纯,曲伸.胰高血糖素样肽-1受体激动剂与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2014,(01):40.[doi:10.3760/cma.j.issn.1673-4157.2014.01.011]
 Wang Xingchun*,Qu Shen.Glucagon like peptide-1 receptor agonist and nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):40.[doi:10.3760/cma.j.issn.1673-4157.2014.01.011]
[5]黄玥晔,曲伸.甲状腺激素受体:非酒精性脂肪性肝病的新靶点[J].国际内分泌代谢杂志,2014,(01):43.[doi:10.3760/cma.j.issn.1673-4157.2014.01.012]
 Huang Yueye,Qu Shen.Thyroid hormone receptor:a new target of nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):43.[doi:10.3760/cma.j.issn.1673-4157.2014.01.012]
[6]蔡芸莹,苏恒.DPP-4在脂质代谢及非酒精性脂肪性肝病中的作用研究[J].国际内分泌代谢杂志,2014,(02):112.[doi:10.3760/cma.j.issn.1673-4157.2014.02.012]
 Cai Yun-ying,Su Heng..Effects of dipeptidyl peptidase-4 on lipid metabolism and nonalcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):112.[doi:10.3760/cma.j.issn.1673-4157.2014.02.012]
[7]李爱玲,谢云,李瑾,等.体重指数和腰臀比预测非酒精性脂肪性肝病发病风险的比较[J].国际内分泌代谢杂志,2014,(02):135.[doi:10.3760/cma.j.issn.1673-4157.2014.02.018]
 Li Ailing,Xie Yun,Li Jin,et al.Comparison of body mass index and waist-to-hip ratio for predicting of non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2014,(05):135.[doi:10.3760/cma.j.issn.1673-4157.2014.02.018]
[8]冯静,魏亚聪,刘超,等.SIRT3与胰岛素抵抗[J].国际内分泌代谢杂志,2017,37(05):337.
 Feng Jing,Wei Yacong,Liu Chao,et al.SIRT3 and insulin resistance[J].International Journal of Endocrinology and Metabolism,2017,37(05):337.
[9]钟祯 张霄旦 李万根.内质网与线粒体相互作用在糖尿病心肌病中的作用[J].国际内分泌代谢杂志,2019,39(01):57.[doi:10.3760/cma.j.issn.1673-4157.2019.01.014]
 Zhong Zhen,Zhang Xiaodan,Li Wangen.Roles of the interactions between endoplasmic reticulum and mitochondria in diabetic cardiomyopathy[J].International Journal of Endocrinology and Metabolism,2019,39(05):57.[doi:10.3760/cma.j.issn.1673-4157.2019.01.014]
[10]张贺 杨立英 黄雯莉 王文昭 陈素凤 任路平.长链非编码RNA与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2020,40(04):241.[doi:10.3760/cma.j.issn.1673-4157.2020.04.006]
 Zhang He,Yang Liying,Huang Wenli,et al.Long non-coding RNA and non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2020,40(05):241.[doi:10.3760/cma.j.issn.1673-4157.2020.04.006]

备注/Memo

备注/Memo:
通信作者:都健,Email:dujianbox@126.com
Corresponding author: Du Jian, Email: dujianbox@126.com
基金项目:辽宁省高等学校基本科研项目(LQNK201715)
Fund program:Basic Scientific Research Project of Institutions of Higher Learning in Liaoning Province(LQNK201715)
更新日期/Last Update: 2019-09-20