参考文献/References:
[1] Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion[J]. J Cell Biol, 2015, 208(5):501-512.DOI:10.1083/jcb.201409063.
[2] Arner P, Bernard S, Salehpour M, et al. Dynamics of human adipose lipid turnover in health and metabolic disease[J]. Nature, 2011, 478(7367):110-113. DOI:10.1038/nature10426.
[3] Klöting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome[J]. Rev Endocr Metab Disord, 2014, 15(4):277-287.DOI:10.1007/s11154-014-9301-0.
[4] Hsiao KY, Sun HS, Tsai SJ. Circular RNA-New member of noncoding RNA with novel functions[J]. Exp Biol Med(Maywood), 2017, 242(11):1136-1141.DOI:10.1177/1535370217708978.
[5] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1):55-66.DOI:10.1016/j.molcel.2014.08.019.
[6] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5):453-461.DOI:10.1038/nbt.2890.
[7] Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2):e30733. DOI:10.1371/journal.pone.0030733.
[8] Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157.DOI:10.1261/rna.035667.112.
[9] Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation[J]. Cell Rep, 2014, 9(5):1966-1980.DOI:10.1016/j.celrep.2014.10.062.
[10] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes:a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8):981-984.DOI:10.1038/cr.2015.82.
[11] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.DOI:10.1038/nature11928.
[12] Sun L, Xu R, Sun X, et al. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell[J]. Cytotherapy, 2016,18(3):413-422.DOI:10.1016/j.jcyt.2015.11.018.
[13] Zhang H, Deng T, Ge S, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7[J]. Oncogene,2019,38(15):2844-2859.DOI:10.1038/s41388-018-0619-z.
[14] Zhang X, Chen L, Xiao B, et al. Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-κB pathway[J]. Biochem Biophys Res Commun, 2019,511(3):551-558.DOI:10.1016/j.bbrc.2019.02.082.
[15] Harman-Boehm I, Blüher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations:effect of regional adiposity and the comorbidities of obesity[J]. J Clin Endocrinol Metab, 2007, 92(6):2240-2247.DOI:10.1210/jc.2006-1811.
[16] Liu X, Liu K, Shan B, et al. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs[J]. J Anim Sci Biotechnol, 2018,9:76.DOI:10.1186/s40104-018-0292-7.
[17] Li A, Huang W, Zhang X, et al. Identification and characterization of circRNAs of two pig breeds as a new biomarker in metabolism-related diseases[J]. Cell Physiol Biochem, 2018, 47(6):2458-2470.DOI:10.1159/000491619.
[18] Zhu Y, Gui W, Lin X, et al. Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1[J]. Exp Cell Res,2020,387(2):111753.DOI:10.1016/j.yexcr.2019.111753.
[19] Zhang Z, Zhang T, Feng R, et al. circARF3 alleviates mitophagy-mediated inflammation by targeting miR-103/TRAF3 in mouse adipose tissue[J]. Mol Ther Nucleic Acids,2019,14:192-203.DOI:10.1016/j.omtn.2018.11.014.
[20] An T, Zhang J, Lv B, et al. Salvianolic acid B plays an anti-obesity role in high fat diet-induced obese mice by regulating the expression of mRNA, circRNA, and lncRNA[J]. Peer J, 2019, 7:e6506.DOI:10.7717/peerj.6506.
[21] Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance[J]. Physiol Rev, 2007,87(2):507-520.DOI:10.1152/physrev.00024.2006.
[22] Xu H, Guo S, Li W, et al. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells[J]. Sci Rep, 2015, 5:12453.DOI:10.1038/srep12453.
[23] Stoll L, Sobel J, Rodriguez-Trejo A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions[J]. Mol Metab,2018,9:69-83.DOI:10.1016/j.molmet.2018.01.010.
[24] Zhao Z, Li X, Jian D, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus[J]. Acta Diabetol, 2016, 54(3):237-245. DOI:10.1007/s00592-016-0943-0.
[25] Fang Y, Wang X,Li W,et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus[J]. Int J Mol Med,2018,42(4):1865-1874.DOI:10.3892/ijmm.2018.3783.
[26] Li X,Zhao Z,Jian P, et al. Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus[J]. Diabetes Vas Disease Res,2017,14(6):510-515.DOI:10.3892/ijmm.2018.3783.
[27] Li A, Sun Y, Drummer C, et al. Increasing upstream chromatin long-range interactions may favor induction of circular RNAs in lysoPC-activated human aortic endothelial cells[J]. Front Physiol,2019,10:433.DOI:10.3389/fphys.2019.00433.
[28] Li CY, Ma L, Yu B. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis[J]. Biomed Pharmacother, 2017, 95:1514-1519.DOI:10.1016/j.biopha.2017.09.064.
[29] Song CL, Wang JP, Xue X, et al. Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis[J]. Cell Physiol Biochem, 2017, 42(3):1202-1212. DOI:10.1159/000478918.
[30] Shang L, Quan A, Sun H, et al. MicroRNA-148a-3p promotes survival and migration of endothelial cells isolated from ApoE deficient mice through restricting circular RNA 0003575[J]. Gene, 2019,711:143948.DOI:10.1016/j.gene.2019.143948.
[31] Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun,2016,7:12429.DOI:10.1038/ncomms12429.
[32] Wang L, Shen C, Wang Y, et al. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease[J]. Atherosclerosis,2019, 286:88-96.DOI:10.1016/j.atherosclerosis.2019.05.006.
[33] Zhao Z, Li X, Gao C, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease[J]. Sci Rep,2017,7:39918.DOI:10.1038/srep39918.
[34] Bazan HA, Hatfield SA, Brug A, et al. Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels[J]. Circ Cardiovasc Genet,2017,10(4):e001720.DOI:10.1161/circgenetics.117.001720.
[35] Guo XY, Chen JN, Sun F, et al. circRNA_0046367 prevents hepatoxicity of lipid peroxidation:an inhibitory role against hepatic steatosis[J]. Oxid Med Cell Longev, 2017, 2017:3960197.DOI:10.1155/2017/3960197.
[36] Guo XY, Sun F, Chen JN, et al. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling[J]. World J Gastroenterol, 2018, 24(3):323-337. DOI:10.3748/wjg.v24.i3.323.
[37] Guo XY, He CX, Wang YQ, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis[J]. Biomed Res Int,2017,2017:5936171. DOI:10.1155/2017/5936171.
[38] Li P, Shan K, Liu Y, et al. CircScd1 promotes fatty liver disease via the janus kinase 2/signal transducer and activator of transcription 5 pathway[J]. Dig Dis Sci, 2019,64(1):113-122.DOI:10.1007/s10620-018-5290-2.
[39] Zhu M, Li M, Zhou W, et al. Qianggan extract improved nonalcoholic steatohepatitis by modulating lncRNA/circRNA immune ceRNA networks[J]. BMC Complement Altern Med, 2019,19(1):156.DOI:10.1186/s12906-019-2577-6.
[40] Guo J, Zhou Y, Cheng Y, et al. Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice[J]. Cell Physiol Biochem, 2018, 45(4):1487-1505.DOI:10.1159/000487575.
相似文献/References:
[1]吕福平,黄才博,薛耀明.脂质异位沉积与慢性肾脏疾病[J].国际内分泌代谢杂志,2014,(06):390.[doi:10.3760/cma.j.issn.1673-4157.2014.06.008]
Lv Fuping,Huang Caibo,Xue Yaoming..Ectopic lipid accumulation and chronic kidney disease[J].International Journal of Endocrinology and Metabolism,2014,(04):390.[doi:10.3760/cma.j.issn.1673-4157.2014.06.008]
[2]李晶,董荣娜,于德民.有氧运动对胰岛素抵抗小鼠visfatin
表达的影响[J].国际内分泌代谢杂志,2016,36(01):10.[doi:10.3760/cma.j.issn.1673-4157.2016.01.003]
Li Jing,Dong Rongna,Yu Demin..Effects of aerobic exercise on the expression of visfatin in mice with insulin resistance[J].International Journal of Endocrinology and Metabolism,2016,36(04):10.[doi:10.3760/cma.j.issn.1673-4157.2016.01.003]
[3]严克敏,龚凤英.Betatrophin与胰岛β细胞增殖及糖脂代谢的关系[J].国际内分泌代谢杂志,2016,36(04):253.[doi:10.3760/cma.j.issn.1673-4157.2016.04.10]
Yan Kemin,Gong Fengying.Relationships between betatrophin, islet β cell proliferation and glucose-lipid metabolism[J].International Journal of Endocrinology and Metabolism,2016,36(04):253.[doi:10.3760/cma.j.issn.1673-4157.2016.04.10]
[4]张群慧,陈明卫.miRNA与肥胖[J].国际内分泌代谢杂志,2017,37(01):35.[doi:10.3760/cma.j.issn.1673-4157.2017.01.10]
Zhang Qunhui,Chen Mingwei..microRNA and obesity[J].International Journal of Endocrinology and Metabolism,2017,37(04):35.[doi:10.3760/cma.j.issn.1673-4157.2017.01.10]
[5]李洋,任路平,宋光耀.自噬与肝脏脂代谢[J].国际内分泌代谢杂志,2017,37(02):128.[doi:10.3760/cma.j.issn.1673-4157.2017.02.015]
Li Yang*,Ren Luping,Song Guangyao..Autophagy and lipid metabolism in the liver[J].International Journal of Endocrinology and Metabolism,2017,37(04):128.[doi:10.3760/cma.j.issn.1673-4157.2017.02.015]
[6]项芬芬,张学梅,高英慧,等.p53与物质能量代谢的关系[J].国际内分泌代谢杂志,2017,37(04):262.
Xiang Fenfen*,Zhang Xuemei,Gao Yinghui,et al.Relationship between p53 and material, energy metabolism[J].International Journal of Endocrinology and Metabolism,2017,37(04):262.
[7]杨琴 程庆丰.白细胞介素-15与糖脂代谢[J].国际内分泌代谢杂志,2018,38(02):93.[doi:10.3760/cma.j.issn.1673-4157.2018.02.005]
Yang Qin,Cheng Qingfeng..Relationship of interleukin-15 and glycolipid metabolism[J].International Journal of Endocrinology and Metabolism,2018,38(04):93.[doi:10.3760/cma.j.issn.1673-4157.2018.02.005]
[8]于晓蕾 陈新卫 任路平.骨形态发生蛋白与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2018,38(02):128.[doi:10.3760/cma.j.issn.1673-4157.2018.02.015]
Yu Xiaolei*,Chen Xinwei,Ren Luping.Bone morphogenetic protein and non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2018,38(04):128.[doi:10.3760/cma.j.issn.1673-4157.2018.02.015]
[9]周晓丽 孙毅娜 钱智勇 顾清 张倩 李晶.硒联合维生素B6对高脂血症患者
血脂水平的影响及机制研究[J].国际内分泌代谢杂志,2019,39(01):1.[doi:10.3760/cma.j.issn.1673-4157.2019.01.001]
Zhou Xiaoli,Sun Yina,Qian Zhiyong,et al.Effects and mechanism of selenium combined with vitamin B6 on the level of blood lipid in patients with hyperlipidemia[J].International Journal of Endocrinology and Metabolism,2019,39(04):1.[doi:10.3760/cma.j.issn.1673-4157.2019.01.001]
[10]王佳蓓 陈风 刘莹 王涤非.Nur77与物质能量代谢的关系[J].国际内分泌代谢杂志,2019,39(01):49.[doi:10.3760/cma.j.issn.1673-4157.2019.01.012]
Wang Jiabei,Chen Feng,Liu Ying,et al.Relationship between Nur77 and meterial, energy metabolism[J].International Journal of Endocrinology and Metabolism,2019,39(04):49.[doi:10.3760/cma.j.issn.1673-4157.2019.01.012]