[1]朱伊祎 林细华 李红.环状RNA与脂代谢[J].国际内分泌代谢杂志,2020,40(04):244-248.[doi:10.3760/cma.j.issn.1673-4157.2020.04.007]
 Zhu Yiyi,Lin Xihua,Li Hong.Circular RNA and lipid metabolism[J].International Journal of Endocrinology and Metabolism,2020,40(04):244-248.[doi:10.3760/cma.j.issn.1673-4157.2020.04.007]
点击复制

环状RNA与脂代谢
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
40
期数:
2020年04期
页码:
244-248
栏目:
脂代谢专题
出版日期:
2020-07-20

文章信息/Info

Title:
Circular RNA and lipid metabolism
作者:
朱伊祎 林细华 李红
浙江大学医学院附属邵逸夫医院内分泌科,杭州 310016
Author(s):
Zhu Yiyi Lin Xihua Li Hong
Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
关键词:
环状RNA 脂代谢 脂代谢相关疾病
Keywords:
Circular RNA Lipid metabolism Lipid-related diseases
DOI:
10.3760/cma.j.issn.1673-4157.2020.04.007
摘要:
脂代谢参与了多种代谢相关疾病的发生、发展与调控,涉及营养调节、激素调节和体内平衡。近年来,越来越多的证据表明,非编码RNA的异常表达与代谢性疾病的发生和发展有关。其中,环状RNA作为一种新的非编码RNA,通过与相应的微小RNA或RNA结合蛋白相互作用,在脂代谢相关疾病如肥胖、2型糖尿病、动脉粥样硬化以及非酒精性脂肪性肝病等的发生、发展中起重要作用。
Abstract:
Lipid metabolism is a complex physical process including nutritional regulation, hormone regulation and homeostasis, which plays important roles in the occurrence and development of metabolic diseases. The past few decades have witnessed the progress made in exploring the potential role of noncoding RNA involved in metabolic diseases, especially for circular RNA(circRNA). Through interaction with microRNA or RNA binding protein, circRNA has a strong impact on lipid-related metabolic disorders including obesity, diabetes mellitus, cardiovascular diseases and non-alcoholic fatty liver disease.

参考文献/References:

[1] Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion[J]. J Cell Biol, 2015, 208(5):501-512.DOI:10.1083/jcb.201409063.
[2] Arner P, Bernard S, Salehpour M, et al. Dynamics of human adipose lipid turnover in health and metabolic disease[J]. Nature, 2011, 478(7367):110-113. DOI:10.1038/nature10426.
[3] Klöting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome[J]. Rev Endocr Metab Disord, 2014, 15(4):277-287.DOI:10.1007/s11154-014-9301-0.
[4] Hsiao KY, Sun HS, Tsai SJ. Circular RNA-New member of noncoding RNA with novel functions[J]. Exp Biol Med(Maywood), 2017, 242(11):1136-1141.DOI:10.1177/1535370217708978.
[5] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1):55-66.DOI:10.1016/j.molcel.2014.08.019.
[6] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5):453-461.DOI:10.1038/nbt.2890.
[7] Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2):e30733. DOI:10.1371/journal.pone.0030733.
[8] Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157.DOI:10.1261/rna.035667.112.
[9] Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation[J]. Cell Rep, 2014, 9(5):1966-1980.DOI:10.1016/j.celrep.2014.10.062.
[10] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes:a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8):981-984.DOI:10.1038/cr.2015.82.
[11] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.DOI:10.1038/nature11928.
[12] Sun L, Xu R, Sun X, et al. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell[J]. Cytotherapy, 2016,18(3):413-422.DOI:10.1016/j.jcyt.2015.11.018.
[13] Zhang H, Deng T, Ge S, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7[J]. Oncogene,2019,38(15):2844-2859.DOI:10.1038/s41388-018-0619-z.
[14] Zhang X, Chen L, Xiao B, et al. Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-κB pathway[J]. Biochem Biophys Res Commun, 2019,511(3):551-558.DOI:10.1016/j.bbrc.2019.02.082.
[15] Harman-Boehm I, Blüher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations:effect of regional adiposity and the comorbidities of obesity[J]. J Clin Endocrinol Metab, 2007, 92(6):2240-2247.DOI:10.1210/jc.2006-1811.
[16] Liu X, Liu K, Shan B, et al. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs[J]. J Anim Sci Biotechnol, 2018,9:76.DOI:10.1186/s40104-018-0292-7.
[17] Li A, Huang W, Zhang X, et al. Identification and characterization of circRNAs of two pig breeds as a new biomarker in metabolism-related diseases[J]. Cell Physiol Biochem, 2018, 47(6):2458-2470.DOI:10.1159/000491619.
[18] Zhu Y, Gui W, Lin X, et al. Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1[J]. Exp Cell Res,2020,387(2):111753.DOI:10.1016/j.yexcr.2019.111753.
[19] Zhang Z, Zhang T, Feng R, et al. circARF3 alleviates mitophagy-mediated inflammation by targeting miR-103/TRAF3 in mouse adipose tissue[J]. Mol Ther Nucleic Acids,2019,14:192-203.DOI:10.1016/j.omtn.2018.11.014.
[20] An T, Zhang J, Lv B, et al. Salvianolic acid B plays an anti-obesity role in high fat diet-induced obese mice by regulating the expression of mRNA, circRNA, and lncRNA[J]. Peer J, 2019, 7:e6506.DOI:10.7717/peerj.6506.
[21] Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance[J]. Physiol Rev, 2007,87(2):507-520.DOI:10.1152/physrev.00024.2006.
[22] Xu H, Guo S, Li W, et al. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells[J]. Sci Rep, 2015, 5:12453.DOI:10.1038/srep12453.
[23] Stoll L, Sobel J, Rodriguez-Trejo A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions[J]. Mol Metab,2018,9:69-83.DOI:10.1016/j.molmet.2018.01.010.
[24] Zhao Z, Li X, Jian D, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus[J]. Acta Diabetol, 2016, 54(3):237-245. DOI:10.1007/s00592-016-0943-0.
[25] Fang Y, Wang X,Li W,et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus[J]. Int J Mol Med,2018,42(4):1865-1874.DOI:10.3892/ijmm.2018.3783.
[26] Li X,Zhao Z,Jian P, et al. Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus[J]. Diabetes Vas Disease Res,2017,14(6):510-515.DOI:10.3892/ijmm.2018.3783.
[27] Li A, Sun Y, Drummer C, et al. Increasing upstream chromatin long-range interactions may favor induction of circular RNAs in lysoPC-activated human aortic endothelial cells[J]. Front Physiol,2019,10:433.DOI:10.3389/fphys.2019.00433.
[28] Li CY, Ma L, Yu B. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis[J]. Biomed Pharmacother, 2017, 95:1514-1519.DOI:10.1016/j.biopha.2017.09.064.
[29] Song CL, Wang JP, Xue X, et al. Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis[J]. Cell Physiol Biochem, 2017, 42(3):1202-1212. DOI:10.1159/000478918.
[30] Shang L, Quan A, Sun H, et al. MicroRNA-148a-3p promotes survival and migration of endothelial cells isolated from ApoE deficient mice through restricting circular RNA 0003575[J]. Gene, 2019,711:143948.DOI:10.1016/j.gene.2019.143948.
[31] Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun,2016,7:12429.DOI:10.1038/ncomms12429.
[32] Wang L, Shen C, Wang Y, et al. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease[J]. Atherosclerosis,2019, 286:88-96.DOI:10.1016/j.atherosclerosis.2019.05.006.
[33] Zhao Z, Li X, Gao C, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease[J]. Sci Rep,2017,7:39918.DOI:10.1038/srep39918.
[34] Bazan HA, Hatfield SA, Brug A, et al. Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels[J]. Circ Cardiovasc Genet,2017,10(4):e001720.DOI:10.1161/circgenetics.117.001720.
[35] Guo XY, Chen JN, Sun F, et al. circRNA_0046367 prevents hepatoxicity of lipid peroxidation:an inhibitory role against hepatic steatosis[J]. Oxid Med Cell Longev, 2017, 2017:3960197.DOI:10.1155/2017/3960197.
[36] Guo XY, Sun F, Chen JN, et al. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling[J]. World J Gastroenterol, 2018, 24(3):323-337. DOI:10.3748/wjg.v24.i3.323.
[37] Guo XY, He CX, Wang YQ, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis[J]. Biomed Res Int,2017,2017:5936171. DOI:10.1155/2017/5936171.
[38] Li P, Shan K, Liu Y, et al. CircScd1 promotes fatty liver disease via the janus kinase 2/signal transducer and activator of transcription 5 pathway[J]. Dig Dis Sci, 2019,64(1):113-122.DOI:10.1007/s10620-018-5290-2.
[39] Zhu M, Li M, Zhou W, et al. Qianggan extract improved nonalcoholic steatohepatitis by modulating lncRNA/circRNA immune ceRNA networks[J]. BMC Complement Altern Med, 2019,19(1):156.DOI:10.1186/s12906-019-2577-6.
[40] Guo J, Zhou Y, Cheng Y, et al. Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice[J]. Cell Physiol Biochem, 2018, 45(4):1487-1505.DOI:10.1159/000487575.

相似文献/References:

[1]吕福平,黄才博,薛耀明.脂质异位沉积与慢性肾脏疾病[J].国际内分泌代谢杂志,2014,(06):390.[doi:10.3760/cma.j.issn.1673-4157.2014.06.008]
 Lv Fuping,Huang Caibo,Xue Yaoming..Ectopic lipid accumulation and chronic kidney disease[J].International Journal of Endocrinology and Metabolism,2014,(04):390.[doi:10.3760/cma.j.issn.1673-4157.2014.06.008]
[2]李晶,董荣娜,于德民.有氧运动对胰岛素抵抗小鼠visfatin 表达的影响[J].国际内分泌代谢杂志,2016,36(01):10.[doi:10.3760/cma.j.issn.1673-4157.2016.01.003]
 Li Jing,Dong Rongna,Yu Demin..Effects of aerobic exercise on the expression of visfatin in mice with insulin resistance[J].International Journal of Endocrinology and Metabolism,2016,36(04):10.[doi:10.3760/cma.j.issn.1673-4157.2016.01.003]
[3]严克敏,龚凤英.Betatrophin与胰岛β细胞增殖及糖脂代谢的关系[J].国际内分泌代谢杂志,2016,36(04):253.[doi:10.3760/cma.j.issn.1673-4157.2016.04.10]
 Yan Kemin,Gong Fengying.Relationships between betatrophin, islet β cell proliferation and glucose-lipid metabolism[J].International Journal of Endocrinology and Metabolism,2016,36(04):253.[doi:10.3760/cma.j.issn.1673-4157.2016.04.10]
[4]张群慧,陈明卫.miRNA与肥胖[J].国际内分泌代谢杂志,2017,37(01):35.[doi:10.3760/cma.j.issn.1673-4157.2017.01.10]
 Zhang Qunhui,Chen Mingwei..microRNA and obesity[J].International Journal of Endocrinology and Metabolism,2017,37(04):35.[doi:10.3760/cma.j.issn.1673-4157.2017.01.10]
[5]李洋,任路平,宋光耀.自噬与肝脏脂代谢[J].国际内分泌代谢杂志,2017,37(02):128.[doi:10.3760/cma.j.issn.1673-4157.2017.02.015]
 Li Yang*,Ren Luping,Song Guangyao..Autophagy and lipid metabolism in the liver[J].International Journal of Endocrinology and Metabolism,2017,37(04):128.[doi:10.3760/cma.j.issn.1673-4157.2017.02.015]
[6]项芬芬,张学梅,高英慧,等.p53与物质能量代谢的关系[J].国际内分泌代谢杂志,2017,37(04):262.
 Xiang Fenfen*,Zhang Xuemei,Gao Yinghui,et al.Relationship between p53 and material, energy metabolism[J].International Journal of Endocrinology and Metabolism,2017,37(04):262.
[7]杨琴 程庆丰.白细胞介素-15与糖脂代谢[J].国际内分泌代谢杂志,2018,38(02):93.[doi:10.3760/cma.j.issn.1673-4157.2018.02.005]
 Yang Qin,Cheng Qingfeng..Relationship of interleukin-15 and glycolipid metabolism[J].International Journal of Endocrinology and Metabolism,2018,38(04):93.[doi:10.3760/cma.j.issn.1673-4157.2018.02.005]
[8]于晓蕾 陈新卫 任路平.骨形态发生蛋白与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2018,38(02):128.[doi:10.3760/cma.j.issn.1673-4157.2018.02.015]
 Yu Xiaolei*,Chen Xinwei,Ren Luping.Bone morphogenetic protein and non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2018,38(04):128.[doi:10.3760/cma.j.issn.1673-4157.2018.02.015]
[9]周晓丽 孙毅娜 钱智勇 顾清 张倩 李晶.硒联合维生素B6对高脂血症患者 血脂水平的影响及机制研究[J].国际内分泌代谢杂志,2019,39(01):1.[doi:10.3760/cma.j.issn.1673-4157.2019.01.001]
 Zhou Xiaoli,Sun Yina,Qian Zhiyong,et al.Effects and mechanism of selenium combined with vitamin B6 on the level of blood lipid in patients with hyperlipidemia[J].International Journal of Endocrinology and Metabolism,2019,39(04):1.[doi:10.3760/cma.j.issn.1673-4157.2019.01.001]
[10]王佳蓓 陈风 刘莹 王涤非.Nur77与物质能量代谢的关系[J].国际内分泌代谢杂志,2019,39(01):49.[doi:10.3760/cma.j.issn.1673-4157.2019.01.012]
 Wang Jiabei,Chen Feng,Liu Ying,et al.Relationship between Nur77 and meterial, energy metabolism[J].International Journal of Endocrinology and Metabolism,2019,39(04):49.[doi:10.3760/cma.j.issn.1673-4157.2019.01.012]

备注/Memo

备注/Memo:
通信作者:李红,Email:srrshnfm@zju.edu.cn
Corresponding author: Li Hong, Email: srrshnfm@zju.edu.cn
更新日期/Last Update: 2020-07-20