参考文献/References:
[1] Zhou J, Xu H, Huang K. Organoselenium small molecules and chromium(Ⅲ)complexes for intervention in chronic low-grade inflammation and type 2 diabetes[J].Curr Top Med Chem,2016,16(8):823-834.
[2] Ge Q, Brichard S, Yi X,et al. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome[J].J Immunol Res,2014,2014:987285. DOI:10.1155/2014/987285.
[3] Arner P, Kulyté A. MicroRNA regulatory networks in human adipose tissue and obesity[J].Nat Rev Endocrinol,2015,11(5):276-288. DOI:10.1038/nrendo.2015.25.
[4] Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome[J].Mol Cell Endocrinol,2010,314(1):1-16. DOI: 10.1016/j.mce.2009.07.031.
[5] Zhuang G, Meng C, Guo X,et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation[J].Circulation,2012,125(23):2892-2903. DOI:10.1161/CIRCULATIONAHA.111.087817.
[6] Ying W, Tseng A, Chang RC,et al. MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation[J].J Clin Invest,2015,125(11):4149-4159. DOI:10.1172/JCI81656.
[7] Essandoh K, Li Y, Huo J,et al. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response[J].Shock,2016,46(2):122-131. DOI:10.1097/SHK.0000000000000604.
[8] Strum JC, Johnson JH, Ward J,et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1[J].Mol Endocrinol,2009,23(11):1876-1884. DOI:10.1210/me.2009-0117.
[9] Ho PC, Chang KC, Chuang YS,et al. Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production[J].FASEB J,2011,25(5):1758-1766. DOI:10.1096/fj.10-179267.
[10] Shi C, Zhu L, Chen X,et al. IL-6 and TNF-α induced obesity-related inflammatory response through transcriptional regulation of miR-146b[J].J Interferon Cytokine Res,2014,34(5):342-348. DOI: 10.1089/jir.2013.0078.
[11] Bhaumik D, Scott GK, Schokrpur S,et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8[J].Aging(Albany NY),2009,1(4):402-411. DOI:10.18632/aging.100042.
[12] Tili E, Michaille JJ, Cimino A,et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock[J].J Immunol,2007,179(8):5082-5089.
[13] Etzrodt M, Cortez-Retamozo V, Newton A,et al. Regulation of monocyte functional heterogeneity by miR-146a and Relb[J].Cell Rep,2012,1(4):317-324. DOI:10.1016/j.celrep.2012.02.009.
[14] Taganov KD, Boldin MP, Chang KJ,et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J].Proc Natl Acad Sci U S A,2006,103(33):12481-12486. DOI:10.1073/pnas.0605298103.
[15] Marques-Rocha JL, Samblas M, Milagro FI,et al. Noncoding RNAs, cytokines, and inflammation-related diseases[J].FASEB J,2015,29(9):3595-3611. DOI:10.1096/fj.14-260323.
[16] Xu N, Papagiannakopoulos T, Pan G,et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells[J].Cell,2009,137(4):647-658. DOI:10.1016/j.cell.2009.02.038.
[17] Kim C, Lee H, Cho YM, et al. TNF α-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation[J]. FEBS Lett, 2013,587(23):3853-3858.DOI:10.1016/j.febslet.2013.10.018.
[18] Chou WW, Wang YT, Liao YC,et al. Decreased microRNA-221 is associated with high levels of TNF-α in human adipose tissue-derived mesenchymal stem cells from obese woman[J].Cell Physiol Biochem,2013,32(1):127-137.DOI:10.1159/000350131.
[19] Chen Q, Wang H, Liu Y,et al. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3[J].PLoS One,2012,7(8):e42971. DOI:10.1371/journal.pone.0042971.
[20] Garg M, Potter JA, Abrahams VM. Identification of microRNAs that regulate TLR2-mediated trophoblast apoptosis and inhibition of IL-6 mRNA[J].PLoS One,2013,8(10):e77249. DOI:10.1371/journal.pone.0077249.
[21] Klöting N, Berthold S, Kovacs P,et al. MicroRNA expression in human omental and subcutaneous adipose tissue[J].PLoS One,2009,4(3):e4699. DOI: 10.1371/journal.pone.0004699.
[22] 张哲,王艳红. 单核细胞趋化蛋白-1(MCP-1/CCL2)与肿瘤关系的研究进展[J]. 中国临床医学,2008,5:735-737.
[23] Arner E, Mejhert N, Kulyté A,et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity[J].Diabetes,2012,61(8):1986-1993. DOI:10.2337/db11-1508.
[24] 王芳,顾鸣敏,王铸钢. 脂联素的研究进展[J]. 现代生物医学进展,2008,8:1549-1552.
[25] Ishida M, Shimabukuro M, Yagi S,et al. MicroRNA-378 regulates adiponectin expression in adipose tissue: a new plausible mechanism[J].PLoS One,2014,9(11):e111537. DOI 10.1371/journal.pone.0111537.
[26] Belarbi Y, Mejhert N, Lorente-Cebrián S,et al. MicroRNA-193b controls adiponectin production in human white adipose tissue[J].J Clin Endocrinol Metab,2015,100(8):E1084-E1088. DOI: 10.1210/jc.2015-1530.
[27] Chen CF, Huang J, Li H,et al. MicroRNA-221 regulates endothelial nitric oxide production and inflammatory response by targeting adiponectin receptor 1[J].Gene,2015,565(2):246-251. DOI:10.1016/j.gene.2015.04.014.
[28] Meerson A, Traurig M, Ossowski V,et al. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α[J].Diabetologia,2013,56(9):1971-1979. DOI:10.1007/s00125-013-2950-9.
[29] Ge Q, Gérard J, Noe..l L,et al. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation[J].Endocrinology,2012,153(11):5285-5296. DOI:10.1210/en.2012-1623.
[30] Subedi A, Park PH. Autocrine and paracrine modulation of microRNA- 155 expression by globular adiponectin in RAW 264.7 macrophages: involvement of MAPK/NF-κB pathway[J].Cytokine,2013,64(3):638-641. DOI:10.1016/j.cyto.2013.09.011.