[1]吴一鸣,杨震,秦利.糖尿病肾病的表观遗传学机制[J].国际内分泌代谢杂志,2017,37(01):48-51.[doi:10.3760/cma.j.issn.1673-4157.2017.01.14]
 Wu Yiming,Yang Zhen,Qin Li..Epigenetic mechanism of diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2017,37(01):48-51.[doi:10.3760/cma.j.issn.1673-4157.2017.01.14]
点击复制

糖尿病肾病的表观遗传学机制()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
37
期数:
2017年01期
页码:
48-51
栏目:
综述
出版日期:
2017-01-20

文章信息/Info

Title:
Epigenetic mechanism of diabetic nephropathy
作者:
吴一鸣杨震秦利
200092 上海交通大学医学院附属新华医院内分泌科
Author(s):
Wu Yiming Yang Zhen Qin Li.
Department of Endocrinology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
关键词:
糖尿病肾病 表观遗传学 调控
Keywords:
Diabetic nephropathy Epigenetics Regulation
DOI:
10.3760/cma.j.issn.1673-4157.2017.01.14
摘要:
表观遗传学是指DNA序列不发生变化的情况下基因表达发生的可遗传的改变。大量的研究发现,表观遗传机制参与调控糖尿病肾病的肾脏纤维化、足细胞凋亡、慢性炎性反应、氧化应激等各个病理生理过程。
Abstract:
Epigenetics refers to the heritable alteration of gene expression without the change of DNA sequence. Emerging evidence from research suggests a key role for epigenetic mechanisms in the regulation of physiological and pathological processes of diabetic nephropathy including renal fibrosis, podocyte apoptosis, chronic inflammation, oxidant stress and so on.

参考文献/References:

[1] Bechtel W, McGoohan S, Zeisberg EM,et al. Methylation determines fibroblast activation and fibrogenesis in the kidney[J].Nat Med,2010,16(5):544-550.DOI: 10.1038/nm.2135.
[2] Ko YA, Mohtat D, Suzuki M,et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development[J].Genome Biol,2013,14(10):R108. DOI:10.1186/gb-2013-14-10-r108.
[3] Zhang H, Cai X, Yi B,et al. Correlation of CTGF gene promoter methylation with CTGF expression in type 2 diabetes mellitus with or without nephropathy[J].Mol Med Rep,2014,9(6):2138-2144. DOI: 10.3892/mmr.2014.2067.
[4] Sun G, Reddy MA, Yuan H,et al. Epigenetic histone methylation modulates fibrotic gene expression[J].J Am Soc Nephrol,2010,21(12):2069-2080.DOI: 10.1681/ASN.2010060633.
[5] Kato M, Arce L, Wang M,et al. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells[J].Kidney Int,2011,80(4):358-368. DOI: 10.1038/ki.2011.43.
[6] Kato M, Putta S, Wang M, et al.TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN[J].Nat Cell Biol,2009,11(7):881-889.DOI: 10.1038/ncb1897.
[7] McClelland AD, Herman-Edelstein M, Komers R,et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7[J].Clin Sci(Lond),2015,129(12):1237-1249. DOI: 10.1042/CS20150427.
[8] Koga K, Yokoi H, Mori K,et al. MicroRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy[J].Diabetologia,2015,58(9):2169-2180. DOI: 10.1007/s00125-015-3642-4.
[9] Wang B, Herman-Edelstein M, Koh P,et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta[J].Diabetes,2010,59(7):1794-1802. DOI: 10.2337/db09-1736.
[10] Gregory PA, Bert AG, Paterson EL,et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J].Nat Cell Biol,2008,10(5):593-601.DOI:10.1038/ncb1722.
[11] Liu H, Wang X, Liu S,et al. Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy[J].Int J Biochem Cell Biol,2016,70:149-160. DOI: 10.1016/j.biocel.2015.11.016.
[12] Alvarez ML, DiStefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene(PVT1)in diabetic nephropathy[J].PLoS One,2011,6(4):e18671.DOI:10.1371/journal.pone.0018671.
[13] Hayashi K, Sasamura H, Nakamura M,et al. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like factor 4 and attenuates proteinuria[J].Kidney Int,2015,88(4):745-753. DOI:10.1038/ki.2015.178.
[14] Hasegawa K, Wakino S, Simic P,et al.Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes[J].Nat Med,2013,19(11):1496-1504.DOI:10.1038/nm.3363.
[15] Wang X, Liu J, Zhen J,et al. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy[J].Kidney Int,2014,86(4):712-725. DOI: 10.1038/ki.2014.111.
[16] Liu XD, Zhang LY, Zhu TC,et al. Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways[J].Int J Clin Exp Pathol,2015,8(5):4525-4534.
[17] Brasacchio D, Okabe J, Tikellis C,et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail[J].Diabetes,2009,58(5):1229-1236. DOI: 10.2337/db08-1666.
[18] Villeneuve LM, Reddy MA, Lanting LL,et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes[J].Proc Natl Acad Sci U S A,2008,105(26):9047-9052.DOI: 10.1073/pnas.0803623105.
[19] Okabe J, Orlowski C, Balcerczyk A,et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells[J].Circ Res,2012,110(8):1067-1076. DOI:10.1161/CIRCRESAHA.112.266171.
[20] Villeneuve LM, Kato M, Reddy MA,et al. Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1[J].Diabetes,2010,59(11):2904-2915. DOI: 10.2337/db10-0208.
[21] Bhatt K, Lanting LL, Jia Y,et al. Anti-Inflammatory role of microRNA-146a in the pathogenesis of diabetic nephropathy[J].J Am Soc Nephrol,2016,27(8):2277-2288. DOI: 10.1681/ASN.2015010111.
[22] Paneni F, Mocharla P, Akhmedov A, et al. Gene silencing of the mitochondrial adaptor p66(Shc)suppresses vascular hyperglycemic memory in diabetes[J].Circ Res,2012,111(3):278-289. DOI: 10.1161/CIRCRESAHA.112.266593.
[23] Zhong Q, Kowluru RA. Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation[J].Invest Ophthalmol Vis Sci,2013,54(1):244-250. DOI: 10.1167/iovs.12-10854.
[24] Di Castro S, Scarpino S, Marchitti S,et al. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet[J].Hypertension,2013,61(2):534-541.DOI:10.1161/HYPERTENSIONAHA.111.00101.

相似文献/References:

[1].2007年糖尿病新进展学习班将举办[J].国际内分泌代谢杂志,2007,(04):226.
[2]李英,段惠军.Raf/MEK/ERK信号转导通路在糖尿病肾病发生发展中的作用[J].国际内分泌代谢杂志,2007,(04):264.
[3]张红 章向成 朱大龙.炎性反应与糖尿病肾病[J].国际内分泌代谢杂志,2015,(01):49.[doi:10.3760/cma.j.issn.1673-4157.2015.01.012]
 Zhang Hong*,Zhang Xiangcheng,Zhu Dalong..Role of inflammation in diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):49.[doi:10.3760/cma.j.issn.1673-4157.2015.01.012]
[4]邵滢,王秋月.Mir-217/Sirt1通路与糖尿病肾病[J].国际内分泌代谢杂志,2015,(02):124.[doi:10.3760/cma.j.issn.1673-4157.2015.02.014]
 Shao Ying,Wang Qiuyue..Mir-217 / Sirt1 pathway and diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):124.[doi:10.3760/cma.j.issn.1673-4157.2015.02.014]
[5]王洁,何媛,于珮.糖尿病肾病的相关危险因素分析[J].国际内分泌代谢杂志,2015,(03):153.[doi:10.3760/cma.j.issn.1673-4157.2015.03.003]
 Wang Jie*,He Yuan,Yu Pei..Risk factors of diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):153.[doi:10.3760/cma.j.issn.1673-4157.2015.03.003]
[6]任慧雯,王秋月.Epac-Rap1与糖尿病肾病[J].国际内分泌代谢杂志,2015,(03):170.[doi:10.3760/cma.j.issn.1673-4157.2015.03.007]
 Ren Huiwen,Wang Qiuyue..Epac-Rap1 and diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):170.[doi:10.3760/cma.j.issn.1673-4157.2015.03.007]
[7]邵滢,王秋月.MiRNA-150与糖尿病肾病[J].国际内分泌代谢杂志,2015,(03):173.[doi:10.3760/cma.j.issn.1673-4157.2015.03.008]
 Shao Ying,Wang Qiuyue..MiRNA-150 and diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):173.[doi:10.3760/cma.j.issn.1673-4157.2015.03.008]
[8]陈堃,刘超,陈国芳,等.糖尿病肾病诊断标志物研究进展[J].国际内分泌代谢杂志,2015,(03):176.[doi:10.3760/cma.j.issn.1673-4157.2015.03.009]
 Chen Kun,Liu Chao,Chen Guofang,et al.Urinary biomarkers for diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):176.[doi:10.3760/cma.j.issn.1673-4157.2015.03.009]
[9]任慧雯,王秋月.Vasohibin-1与糖尿病肾病[J].国际内分泌代谢杂志,2015,(04):246.[doi:10.3760/cma.j.issn.1673-4157.2015.04.008]
 Ren Huiwen,Wang Qiuyue..Vasohibin-1 and diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):246.[doi:10.3760/cma.j.issn.1673-4157.2015.04.008]
[10]安丽,王秋月.Visfatin与胰岛素抵抗及糖尿病肾病的发病机制[J].国际内分泌代谢杂志,2015,(04):248.[doi:10.3760/cma.j.issn.1673-4157.2015.04.009]
 An Li,Wang Qiuyue..Visfatin in the pathogenesis of insulin resistance and diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):248.[doi:10.3760/cma.j.issn.1673-4157.2015.04.009]

备注/Memo

备注/Memo:
基金项目:上海市科学技术委员会科研计划项目(14ZR1427400) 通信作者:秦利,Email:qinli@medmail.com.cn
更新日期/Last Update: 2017-01-20