参考文献/References:
[1] Rekha MR,Sharma CP.Oral delivery of therapeutic protein/peptide for diabetes-future perspectives [J].Int J Pharm,2013,
440(1):48-62.
[2] Mukhopadhyay P,Chakraborty S,Bhattacharya S,et al.pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery [J].Int J Biol Macromol,2015,72: 640-648.
[3] Ensign LM,Cone R,Hanes J.Oral drug delivery with polymeric nanoparticles:the gastrointestinal mucus barriers[J].Adv Drug Deliv Rev,2012,64(6):557-570.
[4] González-Mariscal L,Domínguez-Calderón A,Raya-Sandino A,et al.Tight junctions and the regulation of gene expression[J].Semin Cell Dev Biol,2014,36:213-223.
[5] Pawar VK,Meher JG,Singh Y,et al.Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics:strategies and industrial perspectives [J].J Control Release,2014,
196:168-183.
[6] Yun Y,Cho YW,Park K.Nanoparticles for oral delivery:targeted nanoparticles with peptidic ligands for oral protein delivery [J].Adv Drug Deliv Rev,2013,65(6):822-832.
[7] Pridgen EM,Alexis F,Farokhzad OC.Polymeric nanoparticle technologies for oral drug delivery[J].Clin Gastroenterol Hepatol,2014,12(10):1605-1610.
[8] Feng C,Sun G,Wang Z,et al.Transport mechanism of doxoru-bicin loaded chitosan based nanogels across intestinal epithelium[J]. Eur J Pharm Biopharm,2014,87(1):197-207.
[9] Antunes F,Andrade F,Ferreira D,et al.Models to predict intestinal absorption of therapeutic peptides and proteins[J].Curr Drug Metab,2013,14(1):4-20.
[10] Yeh TH,Hsu LW,Tseng MT,et al.Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening[J].Biomaterials,2011,32(26):6164-6173.
[11] Sonaje K,Chuang EY,Lin KJ,et al.Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan:microscopic,ultrastructural,and computed-tomographic observations[J]. Mol Pharm,2012,9(5):1271-1279.
[12] Hsu LW,Lee PL,Chen CT,et al.Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan[J]. Biomaterials,2012,33(26):6254-6263.
[13] Moghassemi S,Parnian E,Hakamivala A,et al.Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes[J].Mater Sci Eng C Mater Biol Appl,2015,46:333-340.
[14] Mukhopadhyay P,Sarkar K,Chakraborty M,et al.Oral insulin delivery by self-assembled chitosan nanoparticles:in vitro and in vitro studies in diabetic animal model[J].Mater Sci Eng C Mater Biol Appl,2013, 33(1):376-382.
[15] Makhlof A,Tozuka Y,Takeuchi H.Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery[J]. Eur J Pharm Sci,2011,42(5):445-451.
[16] Moghassemi S,Parnian E,Hakamivala A,et al.Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes[J].Mater Sci Eng C Mater Biol Appl,2015,46:333-340.
[17] Mansourpour M,Mahjub R,Amini M,et al.Development of Acid-Resistant Alginate/Trimethyl Chitosan Nanoparticles Containing Cationic β-Cyclodextrin Polymers for Insulin Oral Delivery [J].AAPS Pharm Sci Tech,2015,[Epub ahead of print].
[18] Woitiski CB,Sarmento B,Carvalho RA,et al.Facilitated nanoscale delivery of insulin across intestinal membrane models[J].Int J Pharm,2011,412(1-2):123-131.
[19] Wong TW,Sumiran N.Oral calcium pectinate-insulin nanoparticles:influences of alginate,sodium chloride and Tween 80 on their blood glucose lowering performance [J].J Pharm Pharmacol,2014,
66(5):646-657.
[20] Kadir A,Mokhtar MT,Wong TW.Nanoparticulate assembly of mannuronic acid-and guluronic acid-rich alginate:oral insulin carrier and glucose binder[J].J Pharm Sci,2013,102(12):4353-
4363.
[21] Han L,Zhao Y,Yin L,et al.Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery[J].AAPS Pharm Sci Tech,2012,13(3):836-845.
[22] Ding J,He R,Zhou G,et al.Multilayered mucoadhesive hydrogel films based on thiolated hyaluronic acid and polyvinylalcohol for insulin delivery [J].Acta Biomater,2012,8(10):3643-3651.
[23] Xiong XY,Li QH,Li YP,et al.Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery[J].Colloids Surf B Biointerfaces,2013,111:282-288.
[24] Reix N,Parat A,Seyfritz E,et al.In vitro uptake evaluation in Caco-2 cells and in vitro results in diabetic rats of insulin-loaded PLGA nanoparticles[J].Int J Pharm,2012,437(1-2):213-220.
[25] Yang J,Sun H,Song C.Preparation,characterization and in vivo evaluation of pH-sensitive oral insulin-loaded poly(lactic-co-glycolicacid) nanoparticles[J].Diabetes Obes Metab,2012,14(4):
358-364.
[26] Zhang X,Sun M,Zheng A,et al.Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration[J].Eur J Pharm Sci,2012,45(5):632-638.
[27] Gao X,Cao Y,Song X,et al.Biodegradable, pH-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery[J].Macromol Biosci,2014,14(4):565-575.
[28] Du X,Zhang J,Zhang Y,et al.Decanoic acid grafted oligochi-tosan nanoparticles as a carrier for insulin transport in the gastrointestinal tract[J].Carbohydr Polym,2014,111:433-441.
[29] Nielsen EJ,Yoshida S,Kamei N,et al.In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin[J].J Control Release,2014,
189:19-24.
[30] Zhang J,Zhu X,Jin Y,et al.Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles[J].Mol Pharm,2014,11(5):1520-1532.
[31] Sonaje K,Lin KJ,Tseng MT,et al.Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endo-toxins [J].Biomaterials,2011,32(33):8712-8721.
相似文献/References:
[1]李晏丽,宁光.microRNA与胰岛素抵抗[J].国际内分泌代谢杂志,2014,(03):188.[doi:10.3760/cma.j.issn.1673-4157.2014.03.012]
Li Yanli,Ning Guang..Relationship between microRNA and insulin resistance[J].International Journal of Endocrinology and Metabolism,2014,(04):188.[doi:10.3760/cma.j.issn.1673-4157.2014.03.012]