[1]张慧,宋晓丽,闫彩凤.口服胰岛素纳米粒的吸收机制[J].国际内分泌代谢杂志,2015,(04):275-279.[doi:10.3760/cma.j.issn.1673-4157.2015.04.017]
 Zhang Hui*,Song Xiaoli,Yan Caifeng..Absorptive mechanisms of oral insulin nanoparticles[J].International Journal of Endocrinology and Metabolism,2015,(04):275-279.[doi:10.3760/cma.j.issn.1673-4157.2015.04.017]
点击复制

口服胰岛素纳米粒的吸收机制()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
期数:
2015年04
页码:
275-279
栏目:
综述
出版日期:
2015-07-20

文章信息/Info

Title:
Absorptive mechanisms of oral insulin nanoparticles
作者:
张慧宋晓丽闫彩凤
410013 长沙,中南大学湘雅医学院(张慧);225002 扬州大学化工学院(宋晓丽);225001 扬州,江苏省苏北人民医院内分泌科(张慧,闫彩凤)
Author(s):
Zhang Hui*Song XiaoliYan Caifeng.
*Medical School of Xiangya,Central South University,Changsha 410013,China Corresponding author:Yan Caifeng,Email:yancaifeng@126.com
关键词:
胰岛素口服给药纳米粒
Keywords:
InsulinOral deliveryNanoparticles
DOI:
10.3760/cma.j.issn.1673-4157.2015.04.017
摘要:
胰岛素口服给药可以显著改善糖尿病患者的生活质量,然而,胃肠道中各种生理障碍限制了胰岛素的口服吸收。将胰岛素用特定的聚合纳米材料封装可增加口服胰岛素的生物利用度。载胰岛素纳米粒可通过细胞旁路和跨细胞途径穿过肠上皮细胞层,其吸收机制可能是通过增加与黏膜相互作用或可逆性打开相邻细胞紧密连接。
Abstract:
Oral delivery of therapeutic insulin can significantly improve the quality of life of diabetic patients. However,oral absorption of insulin is limited by various physiological barriers in the gastrointestinal tract. The encapsulation of insulin into specific polymer-based nanoparticles can increase the oral bioavailability of insulin. Nanoparticles can transport across the intestinal epithelium via the paracellular route or transcellular route. The absorptive mechanisms of insulin delivered by nanoparticles may increase the interactions with the intestinal mucosa or open tight junctions between contiguous epithelial cells reversibly.

参考文献/References:

[1] Rekha MR,Sharma CP.Oral delivery of therapeutic protein/peptide for diabetes-future perspectives [J].Int J Pharm,2013, 440(1):48-62.  
[2] Mukhopadhyay P,Chakraborty S,Bhattacharya S,et al.pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery [J].Int J Biol Macromol,2015,72: 640-648.  
[3] Ensign LM,Cone R,Hanes J.Oral drug delivery with polymeric nanoparticles:the gastrointestinal mucus barriers[J].Adv Drug Deliv Rev,2012,64(6):557-570.  
[4] González-Mariscal L,Domínguez-Calderón A,Raya-Sandino A,et al.Tight junctions and the regulation of gene expression[J].Semin Cell Dev Biol,2014,36:213-223.  
[5] Pawar VK,Meher JG,Singh Y,et al.Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics:strategies and industrial perspectives [J].J Control Release,2014, 196:168-183.  
[6] Yun Y,Cho YW,Park K.Nanoparticles for oral delivery:targeted nanoparticles with peptidic ligands for oral protein delivery [J].Adv Drug Deliv Rev,2013,65(6):822-832.  
[7] Pridgen EM,Alexis F,Farokhzad OC.Polymeric nanoparticle technologies for oral drug delivery[J].Clin Gastroenterol Hepatol,2014,12(10):1605-1610.  
[8] Feng C,Sun G,Wang Z,et al.Transport mechanism of doxoru-bicin loaded chitosan based nanogels across intestinal epithelium[J]. Eur J Pharm Biopharm,2014,87(1):197-207.  
[9] Antunes F,Andrade F,Ferreira D,et al.Models to predict intestinal absorption of therapeutic peptides and proteins[J].Curr Drug Metab,2013,14(1):4-20.
[10] Yeh TH,Hsu LW,Tseng MT,et al.Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening[J].Biomaterials,2011,32(26):6164-6173.
[11] Sonaje K,Chuang EY,Lin KJ,et al.Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan:microscopic,ultrastructural,and computed-tomographic observations[J]. Mol Pharm,2012,9(5):1271-1279.
[12] Hsu LW,Lee PL,Chen CT,et al.Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan[J]. Biomaterials,2012,33(26):6254-6263.
[13] Moghassemi S,Parnian E,Hakamivala A,et al.Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes[J].Mater Sci Eng C Mater Biol Appl,2015,46:333-340.
[14] Mukhopadhyay P,Sarkar K,Chakraborty M,et al.Oral insulin delivery by self-assembled chitosan nanoparticles:in vitro and in vitro studies in diabetic animal model[J].Mater Sci Eng C Mater Biol Appl,2013, 33(1):376-382.
[15] Makhlof A,Tozuka Y,Takeuchi H.Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery[J]. Eur J Pharm Sci,2011,42(5):445-451.
[16] Moghassemi S,Parnian E,Hakamivala A,et al.Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes[J].Mater Sci Eng C Mater Biol Appl,2015,46:333-340.
[17] Mansourpour M,Mahjub R,Amini M,et al.Development of Acid-Resistant Alginate/Trimethyl Chitosan Nanoparticles Containing Cationic β-Cyclodextrin Polymers for Insulin Oral Delivery [J].AAPS Pharm Sci Tech,2015,[Epub ahead of print].
[18] Woitiski CB,Sarmento B,Carvalho RA,et al.Facilitated nanoscale delivery of insulin across intestinal membrane models[J].Int J Pharm,2011,412(1-2):123-131.
[19] Wong TW,Sumiran N.Oral calcium pectinate-insulin nanoparticles:influences of alginate,sodium chloride and Tween 80 on their blood glucose lowering performance [J].J Pharm Pharmacol,2014, 66(5):646-657.
[20] Kadir A,Mokhtar MT,Wong TW.Nanoparticulate assembly of mannuronic acid-and guluronic acid-rich alginate:oral insulin carrier and glucose binder[J].J Pharm Sci,2013,102(12):4353- 4363.
[21] Han L,Zhao Y,Yin L,et al.Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery[J].AAPS Pharm Sci Tech,2012,13(3):836-845.
[22] Ding J,He R,Zhou G,et al.Multilayered mucoadhesive hydrogel films based on thiolated hyaluronic acid and polyvinylalcohol for insulin delivery [J].Acta Biomater,2012,8(10):3643-3651.
[23] Xiong XY,Li QH,Li YP,et al.Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery[J].Colloids Surf B Biointerfaces,2013,111:282-288.
[24] Reix N,Parat A,Seyfritz E,et al.In vitro uptake evaluation in Caco-2 cells and in vitro results in diabetic rats of insulin-loaded PLGA nanoparticles[J].Int J Pharm,2012,437(1-2):213-220.
[25] Yang J,Sun H,Song C.Preparation,characterization and in vivo evaluation of pH-sensitive oral insulin-loaded poly(lactic-co-glycolicacid) nanoparticles[J].Diabetes Obes Metab,2012,14(4): 358-364.
[26] Zhang X,Sun M,Zheng A,et al.Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration[J].Eur J Pharm Sci,2012,45(5):632-638.
[27] Gao X,Cao Y,Song X,et al.Biodegradable, pH-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery[J].Macromol Biosci,2014,14(4):565-575.
[28] Du X,Zhang J,Zhang Y,et al.Decanoic acid grafted oligochi-tosan nanoparticles as a carrier for insulin transport in the gastrointestinal tract[J].Carbohydr Polym,2014,111:433-441.
[29] Nielsen EJ,Yoshida S,Kamei N,et al.In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin[J].J Control Release,2014, 189:19-24.
[30] Zhang J,Zhu X,Jin Y,et al.Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles[J].Mol Pharm,2014,11(5):1520-1532.
[31] Sonaje K,Lin KJ,Tseng MT,et al.Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endo-toxins [J].Biomaterials,2011,32(33):8712-8721.

相似文献/References:

[1]李晏丽,宁光.microRNA与胰岛素抵抗[J].国际内分泌代谢杂志,2014,(03):188.[doi:10.3760/cma.j.issn.1673-4157.2014.03.012]
 Li Yanli,Ning Guang..Relationship between microRNA and insulin resistance[J].International Journal of Endocrinology and Metabolism,2014,(04):188.[doi:10.3760/cma.j.issn.1673-4157.2014.03.012]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(21201149);江苏省自然科学基金资助项目(BK2012259);扬州市八大产业科技攻关项目(YZ2010083)   通信作者:闫彩凤,Email:yancaifeng@126.com
更新日期/Last Update: 2015-07-20