[1]巩博深,单忠艳.肠道菌群与炎症小体在自身免疫性甲状腺炎中的相互调控[J].国际内分泌代谢杂志,2021,41(04):309-312.[doi:10.3760/cma.j.cn121383-20210104-01007]
 Gong Boshen,Shan Zhongyan..Regulatory effects of the microbiota and inflammasome in autoimmune thyroiditis[J].International Journal of Endocrinology and Metabolism,2021,41(04):309-312.[doi:10.3760/cma.j.cn121383-20210104-01007]
点击复制

肠道菌群与炎症小体在自身免疫性甲状腺炎中的相互调控()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
41
期数:
2021年04期
页码:
309-312
栏目:
肠道内分泌与代谢性疾病专题
出版日期:
2021-07-20

文章信息/Info

Title:
Regulatory effects of the microbiota and inflammasome in autoimmune thyroiditis
作者:
巩博深单忠艳
中国医科大学附属第一医院内分泌科,卫生健康委甲状腺疾病重点实验室,沈阳 110001
Author(s):
Gong Boshen Shan Zhongyan.
Department of Endocrinology and Metabolism, Institute of Endocrinology, the First Affiliated Hospital of China Medical University, NHK Key Laboratory of Diagnosis and Treatment of Thyroid Disease, Shenyang 110001, China
关键词:
自身免疫性甲状腺炎 肠道菌群 炎症小体
Keywords:
Autoimmune thyroiditis Microbiota Inflammasome
DOI:
10.3760/cma.j.cn121383-20210104-01007
摘要:
自身免疫性甲状腺炎(AIT)是一种常见的器官特异性自身免疫性疾病,包括环境、遗传等在内的多种因素参与AIT的发病机制。已知甲状腺从原始的胃肠道发育而来,两者有着相似的胚胎学和生化特性,因此,AIT的发生与胃肠道疾病的发病机制可能有共同之处。随着16s核糖体RNA测序以及宏基因组测序技术的发展,人们逐渐意识到肠道菌群在自身免疫性疾病中的作用。炎症小体是人体的先天免疫防线,在AIT甲状腺组织中已发现NOD样受体家族3(NLRP3)、黑素瘤缺乏因子2(AIM2)等炎症小体活性增强。菌群失调与炎症小体间相互调控对AIT的发生、发展可能产生影响,探索两者之间的调控机制对于甲状腺疾病的预防、诊断以及治疗具有指导意义。
Abstract:
Autoimmune thyroiditis(AIT)is a common organ-specific autoimmune disease. Both environmental and genetic factors contribute to the pathogenesis of AIT. The thyroid and the gut share a common embryological origin which can explain some embryological and biochemical similarities between them. Thus, there may be some intriguing similarities about the pathogenic mechanism of the AIT and gastrointestinal disease. With the development of 16s ribosome RNA gene sequencing technology, people gradually realized the important role of microbiota in autoimmune diseases. Besides, the inflammasome, guardians of human's innate immune system, has been found over-activation in the thyroid tissue of patients with AIT. The interaction between microbial dysbiosis and inflammasomes may have influence on AIT. Thus, the study based on the regulation between microbiota and inflammasomes provides broad insight of the prevention, diagnosis and therapeutic strategies for thyroid diseases.

参考文献/References:

[1] Köhling HL,Plummer SF,Marchesi JR,et al. The microbiota and autoimmunity:their role in thyroid autoimmune diseases[J].Clin Immunol,2017,183:63-74.DOI:10.1016/j.clim.2017.07.001.
[2] Ishaq HM,Mohammad IS,Guo H,et al.Molecular estimation of alteration in intestinal microbial composition in Hashimoto's thyroiditis patients[J].Biomed Pharmacother,2017,95:865-874.DOI:10.1016/j.biopha.2017.08.101.
[3] Lahner E,Conti L,Cicone F,et al.Thyro-entero-gastric autoimmunity:pathophysiology and implications for patient management[J].Best Pract Res Clin Endocrinol Metab,2020,34(1):101373.DOI:10.1016/j.beem.2019.101373.
[4] Sterzl I,Hrdá P,Matucha P,et al.Anti-helicobacter pylori,anti-thyroid peroxidase,anti-thyroglobulin and anti-gastric parietal cells antibodies in Czech population[J].Physiol Res,2008,57:S135-S141.DOI:10.33549/physiolres.931498.
[5] Xue Y,Enosi Tuipulotu D,Tan WH,et al.Emerging activators and regulators of inflammasomes and pyroptosis[J].Trends Immunol,2019,40(11):1035-1052.DOI:10.1016/j.it.2019.09.005.
[6] Guo Q,Wu Y,Hou Y,et al.Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3,NLRP1,NLRC4,and AIM2 inflammasomes are associated with autoimmune thyroiditis[J].Front Immunol,2018,9:1197.DOI:10.3389/fimmu.2018.01197.
[7] Liu J,Mao C,Dong L,et al.Excessive iodine promotes pyroptosis of thyroid follicular epithelial cells in Hashimoto's thyroiditis through the ROS-NF-kappa B-NLRP3 pathway[J].Front Endocrinol(Lausanne),2019,10:778.DOI:10.3389/fendo.2019.00778.
[8] Liu X,Bai X,Zhao J,et al.Associations between NLRC4 gene polymorphisms and autoimmune thyroid disease[J].Biomed Res Int,2020,2020:1378427.DOI:10.1155/2020/1378427.
[9] Yang PC,Li XJ,Yang YH,et al.The influence of bifidobacterium bifidum and bacteroides fragilis on enteric glial cell-derived neurotrophic factors and inflammasome[J].Inflammation,2020,43(6):2166-2177.DOI:10.1007/s10753-020-01284-z.
[10] Seo SU,Kamada N,Muñoz-Planillo R,et al.Distinct commensals induce interleukin-1 beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury[J].Immunity,2015,42(4):744-755.DOI:10.1016/j.immuni.2015.03.004.
[11] Vierbuchen T,Bang C,Rosigkeit H,et al.The human-associated archaeon Methanosphaera stadtmanae is recognized through its RNA and induces TLR8-dependent NLRP3 inflammasome activation[J].Front Immunol,2017,8:1535.DOI:10.3389/fimmu.2017.01535.
[12] Macia L,Tan J,Vieira AT,et al.Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J].Nature Commun,2015,6:6734.DOI:10.1038/ncomms7734.
[13] Ratajczak W,Ry A,Mizerski A,et al.Immunomodulatory potential of gut microbiome-derived short-chain fatty acids(SCFAs)[J].Acta Biochim Pol,2019,66(1):1-12.DOI:10.18388/abp.2018_2648.
[14] Xu M,Jiang Z,Wang C,et al.Acetate attenuates inflammasome activation through GPR43-mediated Ca2+-dependent NLRP3 ubiquitination[J].Exp Mol Med,2019,51(7):1-13.DOI:10.1038/s12276-019-0276-5.
[15] Yao X,Zhang C,Xing Y,et al.Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis[J].Nature Commun,2017,8(1):1896.DOI:10.1038/s41467-017-01917-2.
[16] Tye H,Yu CH,Simms LA,et al.NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease[J].Nat Commun,2018,9(1):3728.DOI:10.1038/s41467-018-06125-0.
[17] Sellin ME,Müller AA,Felmy B,et al.Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict salmonella replication in the intestinal mucosa[J].Cell Host Microbe,2014,16(2):237-248.DOI:10.1016/j.chom.2014.07.001.
[18] Yin J,Sheng B,Yang K,et al.The protective roles of NLRP6 in intestinal epithelial cells[J].Cell Prolif,2019,52(2):e12555.DOI:10.1111/cpr.12555.
[19] Fitzpatrick Z,Frazer G,Ferro A,et al.Gut-educated IgA plasma cells defend the meningeal venous sinuses[J].Nature,2020,587(7834):472-476.DOI:10.1038/s41586-020-2886-4.

相似文献/References:

[1]姚霜霜,张翼飞,张志国,等.小檗碱改善代谢性疾病的肠道相关机制[J].国际内分泌代谢杂志,2014,(06):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
 Yao Shuangshuang,Zhang Yifei,Zhang Zhiguo,et al.The gut-related mechanisms of berberine in the treatment of metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(04):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
[2]王雪姣,丁晓颖,彭永德.短链脂肪酸在2型糖尿病发病机制中的作用[J].国际内分泌代谢杂志,2017,37(04):270.
 Wang Xuejiao,Ding Xiaoying,Peng Yongde..The role of short chain fatty acids in the pathogenesis of type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2017,37(04):270.
[3]顾子良 王洪东 朱大龙 毕艳.2型糖尿病治疗方法对肠道菌群的影响[J].国际内分泌代谢杂志,2018,38(04):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
 Gu Ziliang,Wang Hongdong,Zhu Dalong,et al.Effects of treatment of type 2 diabetes on gut microbiota[J].International Journal of Endocrinology and Metabolism,2018,38(04):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
[4]陈俊秀 杜宏.肠道菌群与口服降糖药物[J].国际内分泌代谢杂志,2018,38(05):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
 Chen Junxiu*,Du Hong.Intestinal microbiota and oral hypoglycemic agents[J].International Journal of Endocrinology and Metabolism,2018,38(04):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
[5]夏心怡 张洪梅.肠道菌群及其代谢产物调节糖脂代谢的机制[J].国际内分泌代谢杂志,2018,38(05):309.[doi:10.3760/cma.j.issn.1673-4157.2018.05.006]
 Xia Xinyi,Zhang Hongmei.Regulating mechanism of glycolipid metabolism by intestinal microbiota and its metabolites[J].International Journal of Endocrinology and Metabolism,2018,38(04):309.[doi:10.3760/cma.j.issn.1673-4157.2018.05.006]
[6]周晓聪 张晓黎.益生菌与妊娠糖尿病的相关性[J].国际内分泌代谢杂志,2018,38(05):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
 Zhou Xiaocong,Zhang Xiaoli.Relationship between probiotics and gestational diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2018,38(04):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
[7]万仕炜 郁梅 方彭华 张真稳.小檗碱改善胰岛素抵抗的相关机制[J].国际内分泌代谢杂志,2018,38(05):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
 Wan Shiwei*,Yu Mei,Fang Penghua,et al.Related mechanism of berberine in improving insulin resistance[J].International Journal of Endocrinology and Metabolism,2018,38(04):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
[8]张晓蕾 敖娜 都健.维生素D以肠道菌群为靶点治疗非酒精性脂肪性肝病的 研究进展[J].国际内分泌代谢杂志,2019,39(05):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
 Zhang Xiaolei,Ao Na,Du Jian.Advances in the treatment of non-alcoholic fatty liver disease with vitamin D targeting intestinal flora[J].International Journal of Endocrinology and Metabolism,2019,39(04):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
[9]叶凌霞 洪洁.多囊卵巢综合征与肠道菌群[J].国际内分泌代谢杂志,2019,39(05):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]
 Ye Lingxia,Hong Jie.Polycystic ovary syndrome and gut microbiota[J].International Journal of Endocrinology and Metabolism,2019,39(04):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]
[10]陈莹 刘子荣.减重手术改善代谢的新机制[J].国际内分泌代谢杂志,2020,40(04):275.[doi:10.3760/cma.j.issn.1673-4157.2020.04.014]
 Chen Ying,Liu Zirong.The novel mechanisms of weight-loss surgery in improving metabolism[J].International Journal of Endocrinology and Metabolism,2020,40(04):275.[doi:10.3760/cma.j.issn.1673-4157.2020.04.014]

备注/Memo

备注/Memo:
通信作者:单忠艳, Email:shanzhongyan@medmail.com.cn
更新日期/Last Update: 1900-01-01