[1]王鹏程,姜长涛.肠源神经酰胺与代谢性疾病[J].国际内分泌代谢杂志,2021,41(04):295-299.[doi:10.3760/cma.j.cn121383-20200610-06029]
 Wang Pengcheng,Jiang Changtao..Relationship between intestinal ceramide and metabolic diseases[J].International Journal of Endocrinology and Metabolism,2021,41(04):295-299.[doi:10.3760/cma.j.cn121383-20200610-06029]
点击复制

肠源神经酰胺与代谢性疾病()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
41
期数:
2021年04期
页码:
295-299
栏目:
肠道内分泌与代谢性疾病专题
出版日期:
2021-07-20

文章信息/Info

Title:
Relationship between intestinal ceramide and metabolic diseases
作者:
王鹏程姜长涛
北京大学基础医学院生理与病生理学系,教育部心血管国家重点实验室 100191
Author(s):
Wang Pengcheng Jiang Changtao.
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
关键词:
肠源神经酰胺 代谢性疾病 法尼酯衍生物X受体 缺氧诱导因子-2α
Keywords:
Intestinal ceramide Metabolic disease Farnesoid X receptor Hypoxia-inducible factor-2α
DOI:
10.3760/cma.j.cn121383-20200610-06029
摘要:
神经酰胺作为结构骨架可构成各种复杂鞘脂,是脂毒性发挥作用的核心鞘脂代谢物。近年来多项研究表明,肠源神经酰胺在多种代谢性疾病进程中发挥重要作用,可以通过激活不同组织和细胞的线粒体氧化应激、内质网稳态失调及炎性反应机制等影响疾病进程。肠组织能够直接感知肠道微环境变化(如饮食结构变化、菌群结构及其代谢产物改变等),响应多种不同的信号刺激(如胆汁酸、低氧和炎性反应信号等),激活包括法尼酯衍生物X受体(FXR)、缺氧诱导因子-2α(HIF-2α)等信号调节通路,以直接或间接的方式调控神经酰胺代谢。因此,深入探究肠源神经酰胺对不同代谢性疾病发展过程的影响,将为预防和治疗相关疾病提供重要的理论和实践依据。
Abstract:
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China

参考文献/References:

[1] Chaurasia B,Summers SA. Ceramides in metabolism:key lipotoxic players [J].Annu Rev Physiol,2021,83:303-330.DOI:10.1146/annurev-physiol-031620-093815.
[2] Summers SA,Chaurasia B,Holland WL.Metabolic messengers:ceramides [J].Nat Metab,2019,1(11):1051-1058.DOI:10.1038/s42255-019-0134-8.
[3] Zhang X,Zhang Y,Wang P,et al.Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism [J].Cell Metab,2019,30(5):937-951.e5.DOI:10.1016/j.cmet.2019.09.016.
[4] Wang K,Xu R,Snider AJ,et al.Alkaline ceramidase 3 deficiency aggravates colitis and colitis-associated tumorigenesis in mice by hyperactivating the innate immune system [J].Cell Death Dis,2016,7(3):e2124.DOI:10.1038/cddis.2016.36.
[5] Jiang C,Xie C,Li F,et al.Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease [J].J Clin Invest,2015,125(1):386-402.DOI:10.1172/JCI76738.
[6] Xie C,Jiang C,Shi J,et al.An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice [J].Diabetes,2017,66(3):613-626.DOI:10.2337/db16-0663.
[7] Jiang C,Xie C,Lyu Y,et al.Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction [J].Nat Commun,2015,6:10166.DOI:10.1038/ncomms10166.
[8] Xie C,Yagai T,Luo Y,et al.Activation of intestinal hypoxia-inducible factor 2α during obesity contributes to hepatic steatosis [J].Nat Med,2017,23(11):1298-1308.DOI:10.1038/nm.4412.
[9] Gu X,Sun R,Chen L,et al.Neutral ceramidase mediates nonalcoholic steatohepatitis by regulating monounsaturated fatty acids and gut IgA(+)B cells [J].Hepatology,2021,73(3):901-919.DOI:10.1002/hep.31628.
[10] Wu Q,Sun L,Hu X,et al.Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis [J].J Clin Invest,2021,131(9):e142865.DOI:10.1172/JCI142865.
[11] Wigger L,Cruciani-Guglielmacci C,Nicolas A,et al.Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans [J].Cell Rep,2017,18(9):2269-2279.DOI:10.1016/j.celrep.2017.02.019.
[12] Luukkonen PK,Zhou Y,Sädevirta S,et al.Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease [J].J Hepatol,2016,64(5):1167-1175.DOI:10.1016/j.jhep.2016.01.002.
[13] Luukkonen PK,Sädevirta S,Zhou Y,et al.Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars [J].Diabetes Care,2018,41(8):1732-1739.DOI:10.2337/dc18-0071.
[14] Oertel S,Scholich K,Weigert A,et al.Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity [J].Cell Mol Life Sci,2017,74(16):3039-3055.DOI:10.1007/s00018-017-2518-9.
[15] Becker KA,Tümmler B,Gulbins E,et al.Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death [J].Biochem Biophys Res Commun,2010,403(3-4):368-374.DOI:10.1016/j.bbrc.2010.11.038.
[16] Hammerschmidt P,Ostkotte D,Nolte H,et al.CerS6-derived sphingolipids interact with MFF and promote mitochondrial fragmentation in obesity [J].Cell,2019,177(6):1536-1552.e23.DOI:10.1016/j.cell.2019.05.008.
[17] Sentelle RD,Senkal CE,Jiang W,et al.Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy [J].Nat Chem Biol,2012,8(10):831-838.DOI:10.1038/nchembio.1059.
[18] Choi S,Snider JM,Olakkengil N,et al.Myristate-induced endoplasmic reticulum stress requires ceramide synthases 5/6 and generation of C14-ceramide in intestinal epithelial cells [J].FASEB J,2018,32(10):5724-5736.DOI:10.1096/fj.201800141R.
[19] Chaurasia B,Summers SA.Ceramides-lipotoxic inducers of metabolic disorders [J].Trends Endocrinol Metab,2015,26(10):538-550.DOI:10.1016/j.tem.2015.07.006.
[20] Gonzalez FJ,Jiang C,Patterson AD.An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease [J].Gastroenterology,2016,151(5):845-859.DOI:10.1053/j.gastro.2016.08.057.
[21] Sun L,Pang Y,Wang X,et al.Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters [J].Acta Pharm Sin B,2019,9(4):702-710.DOI:10.1016/j.apsb.2019.02.004.
[22] Huang F,Zheng X,Ma X,et al.Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism [J].Nat Commun,2019,10(1):4971.DOI:10.1038/s41467-019-12896-x.
[23] Choudhry H,Harris AL.Advances in hypoxia-inducible factor biology [J].Cell Metab,2018,27(2):281-298.DOI:10.1016/j.cmet.2017.10.005.
[24] Johnson EL,Heaver SL,Waters JL,et al.Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels [J].Nat Commun,2020,11(1):2471.DOI:10.1038/s41467-020-16274-w.

相似文献/References:

[1]艾华,谢岚.Irisin与代谢性疾病的关系[J].国际内分泌代谢杂志,2014,(05):316.[doi:10.3760/cma.j.issn.1673-4157.2014.05.008]
 Ai Hua,Xie Lan.Relationship between irisin and metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(04):316.[doi:10.3760/cma.j.issn.1673-4157.2014.05.008]
[2]陈恺情,卜瑞芳.Irisin——可否让代谢性疾病治疗进入新时代[J].国际内分泌代谢杂志,2016,36(01):38.[doi:10.3760/cma.j.issn.1673-4157.2016.01.009]
 Chen Kaiqing,Bu Ruifang..Could irisin lead the treatment of metabolic diseases into a new era?[J].International Journal of Endocrinology and Metabolism,2016,36(04):38.[doi:10.3760/cma.j.issn.1673-4157.2016.01.009]
[3]谢绍锋,黄莉吉,王昆,等.南京市城区40岁以上人群超重、肥胖流行 特点调查分析[J].国际内分泌代谢杂志,2016,36(03):145.[doi:10.3760/cma.j.issn.1673-4157.2016.03.01]
 Xie Shaofeng*,Huang Liji,Wang Kun,et al.Epidemiological investigation of overweight and obesity in population aged 40 years or older in Nanjing City[J].International Journal of Endocrinology and Metabolism,2016,36(04):145.[doi:10.3760/cma.j.issn.1673-4157.2016.03.01]
[4]祝凌妃,杨震,秦利.肌肉因子与代谢性疾病[J].国际内分泌代谢杂志,2016,36(05):355.[doi:10.3760/cma.j.issn.1673-4157.2016.05.19]
 Zhu Lingfei,Yang Zhen,Qin li.Myokines and metabolic disease[J].International Journal of Endocrinology and Metabolism,2016,36(04):355.[doi:10.3760/cma.j.issn.1673-4157.2016.05.19]
[5]项芬芬,张学梅,高英慧,等.p53与物质能量代谢的关系[J].国际内分泌代谢杂志,2017,37(04):262.
 Xiang Fenfen*,Zhang Xuemei,Gao Yinghui,et al.Relationship between p53 and material, energy metabolism[J].International Journal of Endocrinology and Metabolism,2017,37(04):262.
[6]杨雪 相萍萍 陈国芳 刘超.IGF-1在代谢性疾病中的作用[J].国际内分泌代谢杂志,2018,38(01):33.[doi:10.3760/cma.j.issn.1673-4157.2018.01.009]
 Yang Xue,Xiang Pingping,Chen Guofang,et al.Effects of IGF-1 in metabolic diseases[J].International Journal of Endocrinology and Metabolism,2018,38(04):33.[doi:10.3760/cma.j.issn.1673-4157.2018.01.009]
[7]杨雪 韦晓 杨婉薇 陈国芳 刘超.代谢组学在糖尿病研究中的应用[J].国际内分泌代谢杂志,2018,38(05):343.[doi:10.3760/cma.j.issn.1673-4157.2018.05.015]
 Yang Xue,Wei Xiao,Yang Wanwei,et al.Application of metabonomics in diabetic research[J].International Journal of Endocrinology and Metabolism,2018,38(04):343.[doi:10.3760/cma.j.issn.1673-4157.2018.05.015]
[8]王佳蓓 陈风 刘莹 王涤非.Nur77与物质能量代谢的关系[J].国际内分泌代谢杂志,2019,39(01):49.[doi:10.3760/cma.j.issn.1673-4157.2019.01.012]
 Wang Jiabei,Chen Feng,Liu Ying,et al.Relationship between Nur77 and meterial, energy metabolism[J].International Journal of Endocrinology and Metabolism,2019,39(04):49.[doi:10.3760/cma.j.issn.1673-4157.2019.01.012]
[9]王雪 朱惠娟 龚凤英.棕色脂肪因子与代谢性疾病[J].国际内分泌代谢杂志,2019,39(06):409.[doi:10.3760/cma.j.issn.1673-4157.2019.06.012]
 Wang Xue,Zhu Huijuan,Gong Fengying.Relationship between brown adipocytokine and metabolic diseases[J].International Journal of Endocrinology and Metabolism,2019,39(04):409.[doi:10.3760/cma.j.issn.1673-4157.2019.06.012]
[10]乔晶,刘乙君,王彦.甘油三酯-葡萄糖指数与胰岛素抵抗相关代谢性疾病的关系[J].国际内分泌代谢杂志,2022,42(03):223.[doi:10.3760/cma.j.cn121383-20210206-02013]
 QiaoJing,LiuYijun,WangYan..Relationship between triglyceride-glucose index and insulin resistance-related metabolic diseases[J].International Journal of Endocrinology and Metabolism,2022,42(04):223.[doi:10.3760/cma.j.cn121383-20210206-02013]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(91857115,31925021,81921001); 国家重点研发计划(2018YFA0800700)
通信作者:姜长涛,Email:jiangchangtao@bjmu.edu.cn
更新日期/Last Update: 1900-01-01