[1]冯露文,成志锋.尿酸转运蛋白及其相互作用蛋白在尿酸代谢中的作用研究进展[J].国际内分泌代谢杂志,2021,41(03):220-223.[doi:10.3760/cma.j.cn121383-20200608-06017]
 Feng Luwen,Cheng Zhifeng..Research progress on the role of uric transporters and its protein interaction in uric acid metabolism[J].International Journal of Endocrinology and Metabolism,2021,41(03):220-223.[doi:10.3760/cma.j.cn121383-20200608-06017]
点击复制

尿酸转运蛋白及其相互作用蛋白在尿酸代谢中的作用研究进展()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
41
期数:
2021年03期
页码:
220-223
栏目:
综述
出版日期:
2021-05-20

文章信息/Info

Title:
Research progress on the role of uric transporters and its protein interaction in uric acid metabolism
作者:
冯露文成志锋
哈尔滨医科大学附属第四医院内分泌与代谢病科 150001
Author(s):
Feng Luwen Cheng Zhifeng.
Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
关键词:
高尿酸血症 尿酸转运蛋白 蛋白质相互作用
Keywords:
Hyperuricemia Uric transporter Protein interaction
DOI:
10.3760/cma.j.cn121383-20200608-06017
摘要:
尿酸的重吸收和排泄依赖尿酸转运蛋白的作用,人体内尿酸转运蛋白数目众多,如葡萄糖转运蛋白9(GLUT9)、有机阴离子转运体1(OAT1)、尿酸盐转运蛋白1(URAT1)等,但单一尿酸转运蛋白的错义翻译很少直接导致高尿酸血症的发生,尿酸转运蛋白的相互作用蛋白,如跨膜整合蛋白2B(ITM2B)、乙醛脱氢酶16家族A1(ALDH16A1)、PDZ结构域蛋白1(PDZK1)等在高尿酸血症的发生、发展过程中同样有着举足轻重的地位。因此不仅仅研究单一尿酸转运蛋白的错义翻译,同时关注尿酸转运蛋白及其相互作用蛋白在尿酸代谢中的作用,有利于更加深入了解高尿酸血症的发病机制。
Abstract:
The reabsorption and excretion of uric acid depends on the action of uric acid transporter. There are many uric acid transporters in the human body, such as GLUT9, OAT1, URAT1, etc. However, the missense translation of a single uric acid transporter rarely directly leads to the occurrence of hyperuricemia. The interacting proteins of transporters, such as ITM2B, ALDH16A1, PDZK1, etc. also play a pivotal role in the occurrence and development of hyperuricemia. Therefore, not only studying the missense translation of a single uric acid transporter, but also paying attention to the role of uric acid transporter and its interacting proteins in uric acid metabolism will help to understand the pathogenesis of hyperuricemia.

参考文献/References:

[1] Zhang S,Wang Y,Cheng J,et al.Hyperuricemia and cardiovascular disease[J].Curr Pharm Des,2019,25(6):700-709.DOI:10.2174/1381612825666190408122557.
[2] Tai V,Merriman TR,Dalbeth N. Genetic advances in gout:potential applications in clinical practice[J].Curr Opin Rheumatol,2019,31(2):144-151.DOI:10.1097/BOR.0000000000000571.
[3] Tin A,Woodward OM,Kao WHL,et al. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele[J].Hum Mol Genet,2011,20(20):4056-4068.DOI:10.1093/hmg/ddr307.
[4] Kolz M,Johnson T,Sanna S,et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J].PLoS Genetics,2009,5(6):e1000504.DOI:10.1371/journal.pgen.1000504.
[5] Matsuo H,Yamamoto K,Nakaoka H,et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes[J].Ann Rheum Dis,2016,75(4):652-659.DOI:10.1136/annrheumdis-2014-206191.
[6] Nakayama A,Matsuo H,Nakaoka H,et al. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors[J].Sci Rep,2014,4:5227.DOI:10.1038/srep05227.
[7] Ying Y,Chen Y,Zhang S,et al. Investigation of serum biomarkers in primary gout patients using iTRAQ-based screening[J].Clin Exp Rheumatol,2018,36(5):791-797.
[8] Novikov A,Fu Y,Huang W,et al. SGLT2 inhibition and renal urate excretion:role of luminal glucose,GLUT9,and URAT1[J].Am J Physiol Renal Physiol,2019,316(1):F173-F185.DOI:10.1152/ajprenal.00462.2018.
[9] Feng Y,Lin S,Zhao X,et al. Taurine inhibited uric acid uptake in HK-2 renal tubular epithelial cells[J].Adv Exp Med Biol,2019,1155:147-154.DOI:10.1007/978-981-13-8023-5_13.
[10] Hediger MA,Clémençon B,Burrier RE,et al.The ABCs of membrane transporters in health and disease(SLC series):introduction[J].Mol Aspects Med,2013,34(2-3):95-107.DOI:10.1016/j.mam.2012.12.009.
[11] Yong T,Chen S,Xie Y,et al. Hypouricemic effects of armillaria mellea on hyperuricemic mice regulated through OAT1 and CNT2[J].Am J Chin Med,2018,46(3):585-599.DOI:10.1142/S0192415X18500301.
[12] Wang K,Hu L,Chen JK. RIP3-deficience attenuates potassium oxonate-induced hyperuricemia and kidney injury[J].Biomed Pharmacother,2018,101:617-626.DOI:10.1016/j.biopha.2018.02.010.
[13] Engelhart DC,Granados JC,Shi D,et al. Systems biology analysis reveals eight SLC22 transporter subgroups,including OATs,OCTs,and OCTNs[J].Int J Mol Sci,2020,21(5):1791.DOI:10.3390/ijms21051791.
[14] Sakiyama M,Matsuo H,Shimizu S,et al. A common variant of organic anion transporter 4(OAT4/SLC22A11)gene is associated with renal underexcretion type gout[J].Drug Metab Pharmacokinet,2014,29(2):208-210.DOI:10.2133/dmpk.dmpk-13-nt-070.
[15] Tan PK,Liu S,Gunic E,et al.Discovery and characterization of verinurad,a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout[J].Sci Rep,2017,7(1):665.DOI:10.1038/s41598-017-00706-7.
[16] Sakiyama M,Matsuo H,Shimizu S,et al.The effects of URAT1/SLC22A12 nonfunctional variants,R90H and W258X,on serum uric acid levels and gout/hyperuricemia progression[J].Sci Rep,2016,6:20148.DOI:10.1038/srep20148.
[17] Martínez-Reyes CP,Manjarrez-Reyna AN,Méndez-García LA,et al. Uric acid has direct proinflammatory effects on human macrophages by increasing proinflammatory Mediators and bacterial phagocytosis probably via URAT1[J].Biomolecules,2020,10(4):576.DOI:10.3390/biom10040576.
[18] Matsuo H,Nakayama A,Sakiyama M,et al.ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload[J].Sci Rep,2014,4:3755.DOI:10.1038/srep03755.
[19] Matsuo H,Ichida K,Takada T,et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout[J].Sci Rep,2013,3:2014.DOI:10.1038/srep02014.
[20] Ristic B,Sivaprakasam S,Narayanan M,et al. Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2[J].Biochem J,2020,477(8):1499-1513.DOI:10.1042/BCJ20190873.
[21] Mandal AK,Mount DB. Interaction between ITM2B and GLUT9 links urate transport to neurodegenerative disorders[J].Front Physiol,2019,10:1323.DOI:10.3389/fphys.2019.01323.
[22] Pantouris G,Dioletis E,Chen Y,et al. Expression,purification and crystallization of the novel Xenopus tropicalis ALDH16B1,a homologue of human ALDH16A1[J].Chem Biol Interact,2019,304:168-172.DOI:10.1016/j.cbi.2019.03.009.
[23] Charkoftaki G,Chen Y,Han M,et al.Transcriptomic analysis and plasma metabolomics in Aldh16a1-null mice reveals a potential role of ALDH16A1 in renal function[J].Chem Biol Interact,2017,276:15-22.DOI:10.1016/j.cbi.2017.02.013
[24] Chen M,Lu X,Lu C,et al. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway[J].Arthritis Res Ther,2018,20(1):20.DOI:10.1186/s13075-018-1512-4
[25] Srivastava S,Nakagawa K,He X,et al. Identification of the multivalent PDZ protein PDZK1 as a binding partner of sodium-coupled monocarboxylate transporter SMCT1(SLC5A8)and SMCT2(SLC5A12)[J].J Physiol Sci,2019,69(2):399-408.DOI:10.1007/s12576-018-00658-1
[26] Kuo TM,Huang CM,Tu HP,et al.URAT1 inhibition by ALPK1 is associated with uric acid homeostasis[J].Rheumatology(Oxford),2017,56(4):654-659.DOI:10.1093/rheumatology/kew463.

相似文献/References:

[1]黄江燕,董力,邹贵勉,等.广西城市社区居民高尿酸血症流行病学调查[J].国际内分泌代谢杂志,2014,(01):5.[doi:10.3760/cma.j.issn.1673-4157.2014.01.002]
 Huang Jiangyan*,Dong Li,Zou Guimian,et al.Epidemiological survey of hyperuricemia in the Guangxi urban community residents[J].International Journal of Endocrinology and Metabolism,2014,(03):5.[doi:10.3760/cma.j.issn.1673-4157.2014.01.002]
[2]王靖宇,常宝成.高尿酸血症/痛风流行病学特点及危险因素[J].国际内分泌代谢杂志,2016,36(02):78.[doi:10.3760/cma.j.issn.1673-4157.2016.02.002]
 Wang Jingyu,Chang Baocheng..Epidemiological characteristics and risk factors of hyperuricemia/gout[J].International Journal of Endocrinology and Metabolism,2016,36(03):78.[doi:10.3760/cma.j.issn.1673-4157.2016.02.002]
[3]聂秀玲,李明珍,孙丽荣.高尿酸血症与非酒精性脂肪性肝病[J].国际内分泌代谢杂志,2016,36(02):89.[doi:10.3760/cma.j.issn.1673-4157.2016.02.004]
 Nie Xiuling,Li Mingzhen,Sun Lirong..Hyperuricemia and non-alcoholic fatty liver[J].International Journal of Endocrinology and Metabolism,2016,36(03):89.[doi:10.3760/cma.j.issn.1673-4157.2016.02.004]
[4]李明珍,聂秀玲,孙丽荣.高尿酸血症与糖代谢异常的关系[J].国际内分泌代谢杂志,2016,36(04):217.[doi:10.3760/cma.j.issn.1673-4157.2016.04.01]
 Li Mingzhen,Nie Xiuling,Sun Lirong.Relationship between hyperuricemia and abnormalities of glucose metabolism[J].International Journal of Endocrinology and Metabolism,2016,36(03):217.[doi:10.3760/cma.j.issn.1673-4157.2016.04.01]
[5]刘彤,杨亚娟.高尿酸血症与心房颤动的关系[J].国际内分泌代谢杂志,2016,36(04):220.[doi:10.3760/cma.j.issn.1673-4157.2016.04.02]
 Liu Tong,Yang Yajuan.Relationship between hyperuricemia and atrial fibrillation[J].International Journal of Endocrinology and Metabolism,2016,36(03):220.[doi:10.3760/cma.j.issn.1673-4157.2016.04.02]
[6]刘华英,顾丹阳,邵加庆.高尿酸血症与内皮功能障碍[J].国际内分泌代谢杂志,2016,36(06):412.[doi:10.3760/cma.j.issn.1673-4157.2016.06.14]
 Liu Huaying,Gu Danyang,Shao Jiaqing..Hyperuricemia and endothelial dysfunction[J].International Journal of Endocrinology and Metabolism,2016,36(03):412.[doi:10.3760/cma.j.issn.1673-4157.2016.06.14]
[7]曹雯,孙洪平,褚晓秋,等.生活方式干预与高尿酸血症[J].国际内分泌代谢杂志,2017,37(03):172.[doi:10.3760/cma.j.issn.1673-4157.2017.03.007]
 Cao Wen,Sun Hongping,Chu Xiaoqiu,et al.Lifestyle intervention and hyperuricemia[J].International Journal of Endocrinology and Metabolism,2017,37(03):172.[doi:10.3760/cma.j.issn.1673-4157.2017.03.007]
[8]牛紫如,陆强.高尿酸血症与不良妊娠结局[J].国际内分泌代谢杂志,2022,42(02):142.[doi:10.3760/cma.j.cn121383-20201114-11029]
 Niu Ziru,Lu Qiang..Hyperuricemia and adverse pregnancy outcomes[J].International Journal of Endocrinology and Metabolism,2022,42(03):142.[doi:10.3760/cma.j.cn121383-20201114-11029]
[9]吴丹,李竹.H型高血压患者血尿酸与左心室重构的关系[J].国际内分泌代谢杂志,2023,43(02):91.[doi:10.3760/cma.j.cn121383-20211129-11083]
 Wu Dan,Li Zhu..Relationship between serum uric acid and left ventricular remodeling in patients with H-type hypertension[J].International Journal of Endocrinology and Metabolism,2023,43(03):91.[doi:10.3760/cma.j.cn121383-20211129-11083]

备注/Memo

备注/Memo:
通信作者:成志锋,Email:18903602198@163.com
更新日期/Last Update: 2021-05-20