参考文献/References:
[1] Zitvogel L,Ayyoub M,Routy B,et al.Microbiome and anticancer immunosurveillance[J].Cell,2016,165(2):276-287.DOI:10.1016/j.cell.2016.03.001.
[2] Qin J,Li R,Raes J,et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature,2010,464(7285):59-65.DOI:10.1038/nature08821.
[3] Cipolletta D,Cohen P, Spiegelman BM,et al. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects[J].Proc Natl Acad Sci U S A,2015,112(2):482-487.DOI:10.1073/pnas.1423486112.
[4] Raetz CR,Whitfield C.Lipopolysaccharide endotoxins[J].Annu Rev Biochem,2002,71:635-700.DOI:10.1146/annurev.biochem.71.110601.135414.
[5] Kim JJ,Sears DD.TLR4 and insulin resistance[J].Gastroenterol Res Pract,2010,2010.pii: 212563.DOI:10.1155/2010/212563.
[6] Rorato R,Borges BC,Uchoa ET,et al.LPS-induced low-grade inflammation increases hypothalamic JNK expression and causes central insulin resistance irrespective of body weight changes[J].Int J Mol Sci,2017,18(7).pii: E1431.DOI:10.3390/ijms18071431.
[7] Vatanen T,Kostic AD,d'Hennezel E,et al.Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans[J].Cell,2016,165(4):842-853.DOI:10.1016/j.cell.2016.04.007.
[8] Whitfield C,Trent MS.Biosynthesis and export of bacterial lipopolysaccharides[J].Annu Rev Biochem,2014,83:99-128.DOI:10.1146/annurev-biochem-060713-035600.
[9] Nguyen AT,Mandard S,Dray C,et al.Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway[J].Diabetes,2014,63(2):471-482.DOI:10.2337/db13-0903.
[10] Amyot J,Semache M,Ferdaoussi M,et al.Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via toll-like receptor-4 and NF-κB signaling[J].PLoS One,2012,7(4):e36200.DOI:10.1371/journal.pone.0036200.
[11] 雷蕾.脂多糖影响GLUTag细胞gcg mRNA表达的分子机制[D].南方医科大学,2013.
[12] Priyadarshini M,Villa SR,Fuller M,et al.An acetate-specific GPCR, FFAR2, regulates insulin secretion[J].Mol Endocrinol,2015,29(7):1055-1066.DOI:10.1210/me.2015-1007.
[13] Tolhurst G,Heffron H,Lam YS,et al.Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J].Diabetes,2012,61(2):364-371.DOI:10.2337/db11-1019.
[14] Ge H,Li X,Weiszmann J,et al.Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J].Endocrinology,2008,149(9):4519-4526.DOI:10.1210/en.2008-0059.
[15] Kimura I,Ozawa K,Inoue D,et al.The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J].Nat Commun,2013,4:1829.DOI:10.1038/ncomms2852.
[16] Frost G,Sleeth ML,Sahuri-Arisoylu M,et al.The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J].Nat Commun,2014,5:3611.DOI:10.1038/ncomms4611.
[17] Perry RJ,Peng L,Barry NA,et al.Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J].Nature,2016,534(7606):213-217. DOI:10.1038/nature18309.
[18] Kasubuchi M,Hasegawa S,Hiramatsu T,et al.Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation[J].Nutrients,2015,7(4):2839-2849.DOI:10.3390/nu7042839.
[19] Inoue D,Kimura I,Wakabayashi M,et al.Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation[J].FEBS Lett,2012,586(10):1547-1554.DOI:10.1016/j.febslet.2012.04.021.
[20] De Vadder F,Kovatcheva-Datchary P,Goncalves D,et al.Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J].Cell,2014,156(1-2):84-96.DOI:10.1016/j.cell.2013.12.016.
[21] Remely M,Aumueller E,Merold C,et al.Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity[J].Gene,2014,537(1):85-92.DOI:10.1016/j.gene.2013.11.081.
[22] Gao Z,Yin J,Zhang J,et al.Butyrate improves insulin sensitivity and increases energy expenditure in mice[J].Diabetes,2009,58(7):1509-1517.DOI:10.2337/db08-1637.
[23] Mollica MP,Mattace Raso G,Cavaliere G,et al.Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice[J]. Diabetes,2017,66(5):1405-1418.DOI:10.2337/db16-0924.
[24] Chambers ES,Viardot A,Psichas A,et al.Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults[J].Gut,2015,64(11):1744-1754.DOI:10.1136/gutjnl-2014-307913.
[25] Kuipers F,Bloks VW,Groen AK.Beyond intestinal soap--bile acids in metabolic control[J].Nat Rev Endocrinol,2014,10(8):488-498.DOI:10.1038/nrendo.2014.60.
[26] Yamagata K,Daitoku H,Shimamoto Y,et al.Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1[J].J Biol Chem,2004,279(22):23158-23165.DOI:10.1074/jbc.M314322200.
[27] Kir S,Beddow SA,Samuel VT,et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis[J].Science,2011,331(6024):1621-1624.DOI:10.1126/science.1198363.
[28] Katsuma S,Hirasawa A,Tsujimoto G.Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J].Biochem Biophys Res Commun,2005,329(1):386-390.DOI:10.1016/j.bbrc.2005.01.139.
[29] Vettorazzi JF,Ribeiro RA,Borck PC,et al.The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathwayin pancreatic beta cells[J].Metabolism,2016,65(3):54-63.DOI:10.1016/j.metabol.2015.10.021.
[30] Li P,Gu Q,Wang Y,et al.Novel vitamin B12-producing enterococcus spp. and preliminary in vitro evaluation of probiotic potentials[J].Appl Microbiol Biotechnol,2017,101(15):6155-6164.DOI:10.1007/s00253-017-8373-7.
[31] Kibirige D,Mwebaze R.Vitamin B12 deficiency among patients with diabetes mellitus: is routine screening and supplementation justified?[J].J Diabetes Metab Disord,2013,12(1):17.DOI:10.1186/2251-6581-12-17.
[32] Kreznar JH,Keller MP,Traeger LL,et al.Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes[J].Cell Rep,2017,18(7):1739-1750.DOI:10.1016/j.celrep.2017.01.062.
[33] Laukens D,Brinkman BM,Raes J,et al.Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design[J].FEMS Microbiol Rev,2016,40(1):117-132.DOI:10.1093/femsre/fuv036.
[34] Sommer F,Bäckhed F.The gut microbiota--masters of host development and physiology[J].Nat Rev Microbiol,2013,11(4):227-238.DOI:10.1038/nrmicro2974.
[35] Ananthakrishnan AN. Epidemiology and risk factors for IBD[J].Nat Rev Gastroenterol Hepatol,2015,12(4):205-217.DOI:10.1038/nrgastro.2015.34.
相似文献/References:
[1]姚霜霜,张翼飞,张志国,等.小檗碱改善代谢性疾病的肠道相关机制[J].国际内分泌代谢杂志,2014,(06):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
Yao Shuangshuang,Zhang Yifei,Zhang Zhiguo,et al.The gut-related mechanisms of berberine in the treatment of metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(05):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
[2]梁绮君,胡晨鸣,黄容,等.山楂消脂胶囊对肥胖症患者炎性状态
及脂多糖水平的影响[J].国际内分泌代谢杂志,2017,37(04):236.
Liang Qijun,Hu Chenming,Huang Rong,et al.Effects of Shanzha xiaozhi capsule on inflammation and lipopolysaccharide level in obese patients[J].International Journal of Endocrinology and Metabolism,2017,37(05):236.
[3]王雪姣,丁晓颖,彭永德.短链脂肪酸在2型糖尿病发病机制中的作用[J].国际内分泌代谢杂志,2017,37(04):270.
Wang Xuejiao,Ding Xiaoying,Peng Yongde..The role of short chain fatty acids in the pathogenesis of type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2017,37(05):270.
[4]顾子良 王洪东 朱大龙 毕艳.2型糖尿病治疗方法对肠道菌群的影响[J].国际内分泌代谢杂志,2018,38(04):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
Gu Ziliang,Wang Hongdong,Zhu Dalong,et al.Effects of treatment of type 2 diabetes on gut microbiota[J].International Journal of Endocrinology and Metabolism,2018,38(05):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
[5]贺文娟 钟燕.肠道菌群及其代谢产物与肥胖的关系[J].国际内分泌代谢杂志,2018,38(01):40.[doi:10.3760/cma.j.issn.1673-4157.2018.01.011]
He Wenjuan,Zhong Yan..Relationship between gut microbiota,its metabolites and obesity[J].International Journal of Endocrinology and Metabolism,2018,38(05):40.[doi:10.3760/cma.j.issn.1673-4157.2018.01.011]
[6]陈俊秀 杜宏.肠道菌群与口服降糖药物[J].国际内分泌代谢杂志,2018,38(05):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
Chen Junxiu*,Du Hong.Intestinal microbiota and oral hypoglycemic agents[J].International Journal of Endocrinology and Metabolism,2018,38(05):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
[7]周晓聪 张晓黎.益生菌与妊娠糖尿病的相关性[J].国际内分泌代谢杂志,2018,38(05):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
Zhou Xiaocong,Zhang Xiaoli.Relationship between probiotics and gestational diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2018,38(05):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
[8]万仕炜 郁梅 方彭华 张真稳.小檗碱改善胰岛素抵抗的相关机制[J].国际内分泌代谢杂志,2018,38(05):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
Wan Shiwei*,Yu Mei,Fang Penghua,et al.Related mechanism of berberine in improving insulin resistance[J].International Journal of Endocrinology and Metabolism,2018,38(05):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
[9]张晓蕾 敖娜 都健.维生素D以肠道菌群为靶点治疗非酒精性脂肪性肝病的
研究进展[J].国际内分泌代谢杂志,2019,39(05):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
Zhang Xiaolei,Ao Na,Du Jian.Advances in the treatment of non-alcoholic fatty liver disease with vitamin D targeting intestinal flora[J].International Journal of Endocrinology and Metabolism,2019,39(05):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
[10]叶凌霞 洪洁.多囊卵巢综合征与肠道菌群[J].国际内分泌代谢杂志,2019,39(05):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]
Ye Lingxia,Hong Jie.Polycystic ovary syndrome and gut microbiota[J].International Journal of Endocrinology and Metabolism,2019,39(05):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]