[1]夏心怡 张洪梅.肠道菌群及其代谢产物调节糖脂代谢的机制[J].国际内分泌代谢杂志,2018,38(05):309-312320.[doi:10.3760/cma.j.issn.1673-4157.2018.05.006]
 Xia Xinyi,Zhang Hongmei.Regulating mechanism of glycolipid metabolism by intestinal microbiota and its metabolites[J].International Journal of Endocrinology and Metabolism,2018,38(05):309-312320.[doi:10.3760/cma.j.issn.1673-4157.2018.05.006]
点击复制

肠道菌群及其代谢产物调节糖脂代谢的机制()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
38
期数:
2018年05期
页码:
309-312320
栏目:
综述
出版日期:
2018-09-20

文章信息/Info

Title:
Regulating mechanism of glycolipid metabolism by intestinal microbiota and its metabolites
作者:
夏心怡 张洪梅
作者单位:200092 上海交通大学医学院附属新华医院内分泌科
Author(s):
Xia XinyiZhang Hongmei
Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
关键词:
肠道菌群 脂多糖 短链脂肪酸 胆汁酸 维生素B12 糖脂代谢
Keywords:
Intestinal microbiota Lipopolysaccharide Short chain fatty acid Bile acids Vitamin B12 Glycolipid metabolism
DOI:
10.3760/cma.j.issn.1673-4157.2018.05.006
摘要:
肠道菌群通过抑制AMP活化蛋白激酶和禁食诱导脂肪细胞因子活性、调控过氧化物酶体增殖物活化受体γ、改变肠道通透性等方式调节人体糖、脂代谢。脂多糖为革兰阴性菌细胞壁中的一种特有成分,通过慢性炎性反应引起胰岛素抵抗及肥胖。除肠道菌群本身对于糖、脂代谢的调节外,越来越多的研究发现,肠道菌群代谢产物通过多种途径调节糖、脂代谢。短链脂肪酸通过G蛋白耦联受体(GPR)43及GPR41调节糖、脂代谢,胆汁酸主要通过法尼酯X受体、G蛋白耦联胆汁酸受体1,而维生素B12的调节机制仍未完全明确。
Abstract:
Intestinal microbiota influence glycolipid metabolism by suppressing AMP-activated protein kinase and the activity of fasting-induced adipocytokines, regulating peroxisome proliferator-activated receptor γ, and changing intestinal permeability. Lipopolysaccharide, a specific component of the cell wall of Gram-negative bacteria, induces chronic inflammatory reaction and therefore leads to insulin resistance and obesity. Recently, metabolites of intestinal microbiota have caught the public attention. It is found that these metabolites also influence glycolipid metabolism through different mechanisms. Short chain fatty acid functions by affecting G protein-coupled receptor(GPR)43 and GPR41. Bile acid effects by impacting farnesoid X receptor and G-protein-coupled bile acid receptor 1. The mechanism of how vitamin B12 regulating glycolipid metabolism, however, is still unknown.

参考文献/References:


[1] Zitvogel L,Ayyoub M,Routy B,et al.Microbiome and anticancer immunosurveillance[J].Cell,2016,165(2):276-287.DOI:10.1016/j.cell.2016.03.001.
[2] Qin J,Li R,Raes J,et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature,2010,464(7285):59-65.DOI:10.1038/nature08821.
[3] Cipolletta D,Cohen P, Spiegelman BM,et al. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects[J].Proc Natl Acad Sci U S A,2015,112(2):482-487.DOI:10.1073/pnas.1423486112.
[4] Raetz CR,Whitfield C.Lipopolysaccharide endotoxins[J].Annu Rev Biochem,2002,71:635-700.DOI:10.1146/annurev.biochem.71.110601.135414.
[5] Kim JJ,Sears DD.TLR4 and insulin resistance[J].Gastroenterol Res Pract,2010,2010.pii: 212563.DOI:10.1155/2010/212563.
[6] Rorato R,Borges BC,Uchoa ET,et al.LPS-induced low-grade inflammation increases hypothalamic JNK expression and causes central insulin resistance irrespective of body weight changes[J].Int J Mol Sci,2017,18(7).pii: E1431.DOI:10.3390/ijms18071431.
[7] Vatanen T,Kostic AD,d'Hennezel E,et al.Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans[J].Cell,2016,165(4):842-853.DOI:10.1016/j.cell.2016.04.007.
[8] Whitfield C,Trent MS.Biosynthesis and export of bacterial lipopolysaccharides[J].Annu Rev Biochem,2014,83:99-128.DOI:10.1146/annurev-biochem-060713-035600.
[9] Nguyen AT,Mandard S,Dray C,et al.Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway[J].Diabetes,2014,63(2):471-482.DOI:10.2337/db13-0903.
[10] Amyot J,Semache M,Ferdaoussi M,et al.Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via toll-like receptor-4 and NF-κB signaling[J].PLoS One,2012,7(4):e36200.DOI:10.1371/journal.pone.0036200.
[11] 雷蕾.脂多糖影响GLUTag细胞gcg mRNA表达的分子机制[D].南方医科大学,2013.
[12] Priyadarshini M,Villa SR,Fuller M,et al.An acetate-specific GPCR, FFAR2, regulates insulin secretion[J].Mol Endocrinol,2015,29(7):1055-1066.DOI:10.1210/me.2015-1007.
[13] Tolhurst G,Heffron H,Lam YS,et al.Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J].Diabetes,2012,61(2):364-371.DOI:10.2337/db11-1019.
[14] Ge H,Li X,Weiszmann J,et al.Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J].Endocrinology,2008,149(9):4519-4526.DOI:10.1210/en.2008-0059.
[15] Kimura I,Ozawa K,Inoue D,et al.The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J].Nat Commun,2013,4:1829.DOI:10.1038/ncomms2852.
[16] Frost G,Sleeth ML,Sahuri-Arisoylu M,et al.The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J].Nat Commun,2014,5:3611.DOI:10.1038/ncomms4611.
[17] Perry RJ,Peng L,Barry NA,et al.Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J].Nature,2016,534(7606):213-217. DOI:10.1038/nature18309.
[18] Kasubuchi M,Hasegawa S,Hiramatsu T,et al.Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation[J].Nutrients,2015,7(4):2839-2849.DOI:10.3390/nu7042839.
[19] Inoue D,Kimura I,Wakabayashi M,et al.Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation[J].FEBS Lett,2012,586(10):1547-1554.DOI:10.1016/j.febslet.2012.04.021.
[20] De Vadder F,Kovatcheva-Datchary P,Goncalves D,et al.Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J].Cell,2014,156(1-2):84-96.DOI:10.1016/j.cell.2013.12.016.
[21] Remely M,Aumueller E,Merold C,et al.Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity[J].Gene,2014,537(1):85-92.DOI:10.1016/j.gene.2013.11.081.
[22] Gao Z,Yin J,Zhang J,et al.Butyrate improves insulin sensitivity and increases energy expenditure in mice[J].Diabetes,2009,58(7):1509-1517.DOI:10.2337/db08-1637.
[23] Mollica MP,Mattace Raso G,Cavaliere G,et al.Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice[J]. Diabetes,2017,66(5):1405-1418.DOI:10.2337/db16-0924.
[24] Chambers ES,Viardot A,Psichas A,et al.Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults[J].Gut,2015,64(11):1744-1754.DOI:10.1136/gutjnl-2014-307913.
[25] Kuipers F,Bloks VW,Groen AK.Beyond intestinal soap--bile acids in metabolic control[J].Nat Rev Endocrinol,2014,10(8):488-498.DOI:10.1038/nrendo.2014.60.
[26] Yamagata K,Daitoku H,Shimamoto Y,et al.Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1[J].J Biol Chem,2004,279(22):23158-23165.DOI:10.1074/jbc.M314322200.
[27] Kir S,Beddow SA,Samuel VT,et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis[J].Science,2011,331(6024):1621-1624.DOI:10.1126/science.1198363.
[28] Katsuma S,Hirasawa A,Tsujimoto G.Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J].Biochem Biophys Res Commun,2005,329(1):386-390.DOI:10.1016/j.bbrc.2005.01.139.
[29] Vettorazzi JF,Ribeiro RA,Borck PC,et al.The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathwayin pancreatic beta cells[J].Metabolism,2016,65(3):54-63.DOI:10.1016/j.metabol.2015.10.021.
[30] Li P,Gu Q,Wang Y,et al.Novel vitamin B12-producing enterococcus spp. and preliminary in vitro evaluation of probiotic potentials[J].Appl Microbiol Biotechnol,2017,101(15):6155-6164.DOI:10.1007/s00253-017-8373-7.
[31] Kibirige D,Mwebaze R.Vitamin B12 deficiency among patients with diabetes mellitus: is routine screening and supplementation justified?[J].J Diabetes Metab Disord,2013,12(1):17.DOI:10.1186/2251-6581-12-17.
[32] Kreznar JH,Keller MP,Traeger LL,et al.Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes[J].Cell Rep,2017,18(7):1739-1750.DOI:10.1016/j.celrep.2017.01.062.
[33] Laukens D,Brinkman BM,Raes J,et al.Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design[J].FEMS Microbiol Rev,2016,40(1):117-132.DOI:10.1093/femsre/fuv036.
[34] Sommer F,Bäckhed F.The gut microbiota--masters of host development and physiology[J].Nat Rev Microbiol,2013,11(4):227-238.DOI:10.1038/nrmicro2974.
[35] Ananthakrishnan AN. Epidemiology and risk factors for IBD[J].Nat Rev Gastroenterol Hepatol,2015,12(4):205-217.DOI:10.1038/nrgastro.2015.34.

相似文献/References:

[1]姚霜霜,张翼飞,张志国,等.小檗碱改善代谢性疾病的肠道相关机制[J].国际内分泌代谢杂志,2014,(06):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
 Yao Shuangshuang,Zhang Yifei,Zhang Zhiguo,et al.The gut-related mechanisms of berberine in the treatment of metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(05):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
[2]梁绮君,胡晨鸣,黄容,等.山楂消脂胶囊对肥胖症患者炎性状态 及脂多糖水平的影响[J].国际内分泌代谢杂志,2017,37(04):236.
 Liang Qijun,Hu Chenming,Huang Rong,et al.Effects of Shanzha xiaozhi capsule on inflammation and lipopolysaccharide level in obese patients[J].International Journal of Endocrinology and Metabolism,2017,37(05):236.
[3]王雪姣,丁晓颖,彭永德.短链脂肪酸在2型糖尿病发病机制中的作用[J].国际内分泌代谢杂志,2017,37(04):270.
 Wang Xuejiao,Ding Xiaoying,Peng Yongde..The role of short chain fatty acids in the pathogenesis of type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2017,37(05):270.
[4]顾子良 王洪东 朱大龙 毕艳.2型糖尿病治疗方法对肠道菌群的影响[J].国际内分泌代谢杂志,2018,38(04):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
 Gu Ziliang,Wang Hongdong,Zhu Dalong,et al.Effects of treatment of type 2 diabetes on gut microbiota[J].International Journal of Endocrinology and Metabolism,2018,38(05):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
[5]贺文娟 钟燕.肠道菌群及其代谢产物与肥胖的关系[J].国际内分泌代谢杂志,2018,38(01):40.[doi:10.3760/cma.j.issn.1673-4157.2018.01.011]
 He Wenjuan,Zhong Yan..Relationship between gut microbiota,its metabolites and obesity[J].International Journal of Endocrinology and Metabolism,2018,38(05):40.[doi:10.3760/cma.j.issn.1673-4157.2018.01.011]
[6]陈俊秀 杜宏.肠道菌群与口服降糖药物[J].国际内分泌代谢杂志,2018,38(05):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
 Chen Junxiu*,Du Hong.Intestinal microbiota and oral hypoglycemic agents[J].International Journal of Endocrinology and Metabolism,2018,38(05):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
[7]周晓聪 张晓黎.益生菌与妊娠糖尿病的相关性[J].国际内分泌代谢杂志,2018,38(05):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
 Zhou Xiaocong,Zhang Xiaoli.Relationship between probiotics and gestational diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2018,38(05):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
[8]万仕炜 郁梅 方彭华 张真稳.小檗碱改善胰岛素抵抗的相关机制[J].国际内分泌代谢杂志,2018,38(05):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
 Wan Shiwei*,Yu Mei,Fang Penghua,et al.Related mechanism of berberine in improving insulin resistance[J].International Journal of Endocrinology and Metabolism,2018,38(05):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
[9]张晓蕾 敖娜 都健.维生素D以肠道菌群为靶点治疗非酒精性脂肪性肝病的 研究进展[J].国际内分泌代谢杂志,2019,39(05):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
 Zhang Xiaolei,Ao Na,Du Jian.Advances in the treatment of non-alcoholic fatty liver disease with vitamin D targeting intestinal flora[J].International Journal of Endocrinology and Metabolism,2019,39(05):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
[10]叶凌霞 洪洁.多囊卵巢综合征与肠道菌群[J].国际内分泌代谢杂志,2019,39(05):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]
 Ye Lingxia,Hong Jie.Polycystic ovary syndrome and gut microbiota[J].International Journal of Endocrinology and Metabolism,2019,39(05):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81300642)
作者单位:200092 上海交通大学医学院附属新华医院内分泌科
通信作者:张洪梅,Email:zhanghongmei02@xinhuamed.com.cn
更新日期/Last Update: 2018-09-30