[1]方钱华,李春君.足细胞自噬与糖尿病肾病[J].国际内分泌代谢杂志,2017,37(04):242-245.
 Fang Qianhua,Li Chunjun..Relationship of podocyte autophagy and diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2017,37(04):242-245.
点击复制

足细胞自噬与糖尿病肾病()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
37
期数:
2017年04期
页码:
242-245
栏目:
综述
出版日期:
2017-07-20

文章信息/Info

Title:
Relationship of podocyte autophagy and diabetic nephropathy
作者:
方钱华李春君
300070 天津医科大学代谢病医院内分泌科,内分泌研究所,卫生部激素与发育重点实验室,天津市代谢性疾病重点实验室
Author(s):
Fang Qianhua Li Chunjun.
Department of Endocrinology, Key Laboratory of Hormones and Development(Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
关键词:
足细胞 自噬 糖尿病肾病
Keywords:
Podocyte Autophagy Diabetic nephropathy
文献标志码:
A
摘要:
自噬是机体主要防御机制之一,在代谢器官和疾病的发展中发挥重要的作用。高糖状态可抑制足细胞自噬活性,导致糖尿病肾病的发生、发展。研究表明,哺乳动物雷帕霉素靶蛋白(mTOR)、AMP活化蛋白激酶(AMPK)、沉默信息调节因子1(Sirt1)、内质网应激(ERS)和晚期糖基化终末产物(AGE)等营养信号通路对自噬有重要的调控作用,可能参与糖尿病肾病的发生、发展,有望成为糖尿病肾病防治新的靶点。
Abstract:
Department of Endocrinology, Key Laboratory of Hormones and Development(Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China

参考文献/References:

[1] Mizushima N, Yamamoto A, Matsui M,et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker[J].Mol Biol Cell,2004,15(3):1101-1111. DOI:10.1091/mbc.E03-09-0704.
[2] Fang L, Zhou Y, Cao H,et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury[J].PLoS One,2013,8(4):e60546. DOI:10.1371/journal.pone.0060546.
[3] Yoshizaki T, Kusunoki C, Kondo M,et al. Autophagy regulates inflammation in adipocytes[J].Biochem Biophys Res Commun,2012,417(1):352-357. DOI:10.1016/j.bbrc.2011.11.114.
[4] Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy[J].Diabetes,2012,61(1):23-29. DOI: 10.2337/db11-0555.
[5] Ge L, Baskaran S, Schekman R,et al. The protein-vesicle network of autophagy[J].Curr Opin Cell Biol,2014,29:18-24. DOI:10.1016/j.ceb.2014.02.005.
[6] Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging[J].Cell Res,2014,24(1):92-104. DOI:10.1038/cr.2013.153.
[7] Malaviya R, Laskin JD, Laskin DL. Oxidative stress-induced autophagy: role in pulmonary toxicity[J].Toxicol Appl Pharmacol,2014,275(2):145-151. DOI:10.1016/j.taap.2013.12.022.
[8] Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J].Cell,2011,147(4):728-741. DOI:10.1016/j.cell.2011.10.026.
[9] Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets[J].Ann N Y Acad Sci,2015,1353:72-88. DOI:10.1111/nyas.12758.
[10] Kawachi H, Miyauchi N, Suzuki K,et al. Role of podocyte slit diaphragm as a filtration barrier[J].Nephrology(Carlton),2006,11(4):274-281.DOI:10.1111/j.1440-1797.2006.00583.x.
[11] Pagtalunan ME, Miller PL, Jumping-Eagle S,et al. Podocyte loss and progressive glomerular injury in type Ⅱ diabetes[J].J Clin Invest,1997,99(2):342-348.DOI:10.1172/JCI119163.
[12] Chen J, Chen MX, Fogo AB,et al. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking[J].J Am Soc Nephrol,2013,24(2):198-207. DOI:10.1681/ASN.2012010101.
[13] Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy[J].Diabetes,2012,61(1):23-29. DOI:10.2337/db11-0555.
[14] Tagawa A, Yasuda M, Kume S,et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy[J].Diabetes,2016,65(3):755-767. DOI:10.2337/db15-0473.
[15] Lenoir O, Jasiek M, Hénique C,et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis[J].Autophagy,2015,11(7):1130-1145. DOI: 10.1080/15548627.2015.1049799.
[16] Xiao T, Guan X, Nie L,et al. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice[J].Mol Cell Biochem,2014,394(1-2):145-154. DOI:10.1007/s11010-014-2090-7.
[17] Chen JK, Chen J, Neilson EG,et al. Role of mammalian target of rapamycin signaling in compensatory renal hypertrophy[J].J Am Soc Nephrol,2005,16(5):1384-1391. DOI:10.1681/ASN.2004100894.
[18] Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing[J].Nat Rev Mol Cell Biol,2011,12(1):21-35. DOI:10.1038/nrm3025.
[19] Inoki K, Mori H, Wang J,et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice[J].J Clin Invest,2011,121(6):2181-2196. DOI:10.1172/JCI44771.
[20] Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J].Nat Cell Biol,2011,13(2):132-141. DOI:10.1038/ncb2152.
[21] Kitada M, Kume S, Takeda-Watanabe A,et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy[J].Clin Sci(Lond),2013,124(3):153-164. DOI:10.1042/CS20120190.
[22] Hasegawa K, Wakino S, Simic P,et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes[J].Nat Med,2013,19(11):1496-1504. DOI:10.1038/nm.3363.
[23] Lee IH, Cao L, Mostoslavsky R,et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy[J].Proc Natl Acad Sci U S A,2008,105(9):3374-3379. DOI:10.1073/pnas.0712145105.
[24] Kitada M, Takeda A, Nagai T,et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty(fa/fa)rats: a model of type 2 diabetes[J].Exp Diabetes Res,2011,2011:908185. DOI:10.1155/2011/908185.
[25] Cantó C, Gerhart-Hines Z, Feige JN,et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity[J].Nature,2009,458(7241):1056-1060. DOI:10.1038/nature07813.
[26] Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin[J].PLoS One,2010,5(2):e9199. DOI:10.1371/journal.pone.0009199.
[27] Kanwar YS, Sun L, Xie P,et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy[J].Annu Rev Pathol,2011,6:395-423. DOI:10.1146/annurev.pathol.4.110807.092150.
[28] Fiorentino L, Cavalera M, Menini S,et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay[J].EMBO Mol Med,2013,5(3):441-455. DOI:10.1002/emmm.201201475.
[29] Peng KY, Horng LY, Sung HC,et al. Hepatocyte growth factor has a role in the amelioration of diabetic vascular complications via autophagic clearance of advanced glycation end products: Dispo85E, an HGF inducer, as a potential botanical drug[J].Metabolism,2011,60(6):888-892. DOI:10.1016/j.metabol.2010.08.009.
[30] Hamasaki M, Furuta N, Matsuda A,et al. Autophagosomes form at ER-mitochondria contact sites[J].Nature,2013,495(7441):389-393. DOI:10.1038/nature11910.
[31] Zhang MZ, Wang Y, Paueksakon P,et al. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy[J].Diabetes,2014,63(6):2063-2072. DOI:10.2337/db13-1279.
[32] Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation[J].Science,2011,334(6059):1081-1086. DOI:10.1126/science.1209038.
[33] Cao Y, Hao Y, Li H,et al. Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose[J].Int J Mol Med,2014,33(4):809-816. DOI:10.3892/ijmm.2014.1642.
[34] Chen Y, Liu CP, Xu KF,et al. Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stressand apoptosis induced by advanced glycation end products in cultured mousepodocytes[J].Am J Nephrol,2008,28(6):1014-1022. DOI:10.1159/000148209.

相似文献/References:

[1]李兴佳 曹萌 刘超.自噬与甲状腺癌的关系[J].国际内分泌代谢杂志,2015,(01):56.[doi:10.3760/cma.j.issn.1673-4157.2015.01.014]
 Li Xingjia,Cao Meng,Liu Chao..Relationship between autophagy and thyroid cancer[J].International Journal of Endocrinology and Metabolism,2015,(04):56.[doi:10.3760/cma.j.issn.1673-4157.2015.01.014]
[2]冯俊杰,戴阳丽,王秀敏.MIN6细胞系的细胞学特性及其应用[J].国际内分泌代谢杂志,2016,36(02):135.[doi:10.3760/cma.j.issn.1673-4157.2016.02.014]
 Feng Junjie,Dai Yangli,Wang Xiumin..Cytological characteristics and application of MIN6 cell line[J].International Journal of Endocrinology and Metabolism,2016,36(04):135.[doi:10.3760/cma.j.issn.1673-4157.2016.02.014]
[3]张洁,邸阜生.运动防治非酒精性脂肪性肝病的机制[J].国际内分泌代谢杂志,2016,36(06):404.[doi:10.3760/cma.j.issn.1673-4157.2016.06.12]
 Zhang Jie,Di Fusheng..Mechanism of exercise on non-alcoholic fatty liver disease[J].International Journal of Endocrinology and Metabolism,2016,36(04):404.[doi:10.3760/cma.j.issn.1673-4157.2016.06.12]
[4]金启辉 韩春茂.内皮细胞自噬在糖尿病血管病变中的作用[J].国际内分泌代谢杂志,2018,38(02):113.[doi:10.3760/cma.j.issn.1673-4157.2018.02.011]
 Jin Qihui,Han Chunmao.The role of autophagy of endothelial cells in diabetic vascular diseases[J].International Journal of Endocrinology and Metabolism,2018,38(04):113.[doi:10.3760/cma.j.issn.1673-4157.2018.02.011]
[5]马玉梅,傅松波,金生禄,等.GLP-1类似物改善糖尿病大鼠胰岛素敏感性的研究[J].国际内分泌代谢杂志,2021,41(04):313.[doi:10.3760/cma.j.cn121383-20210313-03033]
 Ma Yumei,Fu Songbo,Jin Shenglu,et al.Glucagon-like peptide-1 analogue improves insulin sensitivity in diabetic rats[J].International Journal of Endocrinology and Metabolism,2021,41(04):313.[doi:10.3760/cma.j.cn121383-20210313-03033]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81300663)
通信作者:李春君,Email:li_chunjun@126.com
更新日期/Last Update: 2017-07-30