参考文献/References:
[1] Weber JA, Baxter DH, Zhang S,et al. The microRNA spectrum in 12 body fluids[J]. Clin Chem,2010,56(11):1733-1741. DOI: 10.1373/clinchem.2010.147405.
[2] Liu J, Liu W, Ying H,et al. Analysis of microRNA expression profile induced by AICAR in mouse hepatocytes[J].Gene,2013,512(2):364-372. DOI: 10.1016/j.gene.2012.09.118.
[3] Ortega FJ, Mercader JM, Moreno-Navarrete JM,et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization[J].Diabetes Care,2014,37(5):1375-1383. DOI: 10.2337/dc13-1847.
[4] Capobianco V, Nardelli C, Ferrigno M,et al. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity[J].J Proteome Res,2012,11(6):3358-3369. DOI: 10.1021/pr300152z.
[5] Hulsmans M, Sinnaeve P, Van der Schueren B, et al. Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease[J].J Clin Endocrinol Metab,2012,97(7):E1213-E1218. DOI: 10.1210/jc.2012-1008.
[6] Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome[J].Obes Rev,2010,11(5):354-361. DOI: 10.1111/j.1467-789X.2009.00659.x.
[7] Ortega FJ, Mercader JM, Catalán V,et al. Targeting the circulating microRNA signature of obesity[J].Clin Chem,2013,59(5):781-792. DOI: 10.1373/clinchem.2012.195776.
[8] Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism[J].J Lipid Res,2010,51(6):1513-1523. DOI: 10.1194/jlr.M004812.
[9] Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance[J].Trends Endocrinol Metab,2014,25(5):255-262. DOI: 10.1016/j.tem.2014.03.002.
[10] Johnson AM, Olefsky JM. The origins and drivers of insulin resistance[J].Cell,2013,152(4):673-684. DOI: 10.1016/j.cell.2013.01.041.
[11] Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance[J].Annu Rev Physiol,2010,72:219-246. DOI: 10.1146/annurev-physiol-021909-135846.
[12] Shi C, Zhu L, Chen X,et al. IL-6 and TNF-α induced obesity-related inflammatory response through transcriptional regulation of miR-146b[J].J Interferon Cytokine Res,2014,34(5):342-348. DOI: 10.1089/jir.2013.0078.
[13] Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat[J].Nature,2014,510(7503):76-83. DOI: 10.1038/nature13477.
[14] Townley-Tilson WH, Callis TE, Wang D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease[J].Int J Biochem Cell Biol, 2010,42(8):1252-1255. DOI: 10.1016/j.biocel.2009.03.002.
[15] Chen Y, Siegel F, Kipschull S,et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit[J].Nat Commun,2013,4:1769. DOI: 10.1038/ncomms2742.
[16] Zhu L, Chen L, Shi CM,et al. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation[J].Cell Biochem Biophys,2014,68(2):283-290. DOI: 10.1007/s12013-013-9708-3.
[17] Xu G, Ji C, Shi C,et al. Modulation of hsa-miR-26b levels following adipokine stimulation[J].Mol Biol Rep,2013,40(5):3577-3582. DOI: 10.1007/s11033-012-2431-0.
[18] Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation[J].RNA,2006,12(9):1626-1632.
[19] Takanabe R, Ono K, Abe Y,et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J].Biochem Biophys Res Commun,2008,376(4):728-732. DOI: 10.1016/j.bbrc.2008.09.050.
[20] Chen L, Hou J, Ye L, et al. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling[J].Sci Rep,2014,4:3819. DOI: 10.1038/srep03819.
[21] Ortega FJ, Moreno-Navarrete JM, Pardo G, et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation[J].PLoS One,2010,5(2):e9022. DOI: 10.1371/journal.pone.0009022.
[22] Neville MJ, Collins JM, Gloyn AL, et al. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization[J].Obesity(Silver Spring),2011,19(4):888-892. DOI: 10.1038/oby.2010.257.
[23] Kim SY, Kim AY, Lee HW,et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression[J].Biochem Biophys Res Commun,2010,392(3):323-338. DOI: 10.1016/j.bbrc.2010.01.012.
[24] Lee EK, Lee MJ, Abdelmohsen K,et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression[J].Mol Cell Biol,2011,31(4):626-638. DOI: 10.1128/MCB.00894-10.
[25] Kinoshita M, Ono K, Horie T, et al. Regulation of adipocyte differentiation by activation of serotonin(5-HT)receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5[J].Mol Endocrinol,2010,24(10):1978-1987. DOI: 10.1210/me.2010-0054.
相似文献/References:
[1]陈堃,刘超,陈国芳,等.糖尿病肾病诊断标志物研究进展[J].国际内分泌代谢杂志,2015,(03):176.[doi:10.3760/cma.j.issn.1673-4157.2015.03.009]
Chen Kun,Liu Chao,Chen Guofang,et al.Urinary biomarkers for diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):176.[doi:10.3760/cma.j.issn.1673-4157.2015.03.009]
[2]柯孟婷,孙家忠,李扬.3,5-二碘-L-甲状腺素对白色脂肪棕色化的作用[J].国际内分泌代谢杂志,2016,36(06):370.[doi:10.3760/cma.j.issn.1673-4157.2016.06.03]
Ke Mengting*,Sun Jiazhong,Li Yang..Effects of 3,5-diiodo-L-thyronine on browning of white adipose tissue[J].International Journal of Endocrinology and Metabolism,2016,36(01):370.[doi:10.3760/cma.j.issn.1673-4157.2016.06.03]
[3]高胜利,郭菲菲,徐珞,等.Nesfatin-1与肥胖的关系[J].国际内分泌代谢杂志,2016,36(06):384.[doi:10.3760/cma.j.issn.1673-4157.2016.06.06]
Gao Shengli,Guo Feifei,Xu Luo,et al.Relationship between nesfatin-1 and obesity[J].International Journal of Endocrinology and Metabolism,2016,36(01):384.[doi:10.3760/cma.j.issn.1673-4157.2016.06.06]
[4]杨曦,刘玉洁,马慧娟.生长分化因子15与肥胖及糖尿病[J].国际内分泌代谢杂志,2016,36(06):388.[doi:10.3760/cma.j.issn.1673-4157.2016.06.07]
Yang Xi*,Liu Yujie,Ma Huijuan..Growth differentiation factor-15 and obesity, diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2016,36(01):388.[doi:10.3760/cma.j.issn.1673-4157.2016.06.07]
[5]刘玉洁,杨曦,马慧娟.MC4R在肥胖及糖代谢中的作用[J].国际内分泌代谢杂志,2016,36(06):391.[doi:10.3760/cma.j.issn.1673-4157.2016.06.08]
Liu Yujie*,YangXi,Ma Huijuan..Role of MC4R in obesity and glucose metabolism[J].International Journal of Endocrinology and Metabolism,2016,36(01):391.[doi:10.3760/cma.j.issn.1673-4157.2016.06.08]
[6]姚旻,赵爱源,李红涛,等.人体肥胖指数在评价2型糖尿病患者
肥胖中的应用价值[J].国际内分泌代谢杂志,2017,37(01):1.[doi:10.3760/cma.j.issn.1673-4157.2017.01.01]
Yao Min*,Zhao Aiyuan,Li Hongtao,et al.Body adiposity index and its value in obesity evaluation in patients with type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2017,37(01):1.[doi:10.3760/cma.j.issn.1673-4157.2017.01.01]
[7]严克敏,朱惠娟,龚凤英.雷公藤红素:一种潜在的治疗肥胖症的新药物[J].国际内分泌代谢杂志,2017,37(01):32.[doi:10.3760/cma.j.issn.1673-4157.2017.01.09]
Yan Kemin,Zhu Huijuan,Gong Fengying..Celastrol:a potential and novel drug for obesity[J].International Journal of Endocrinology and Metabolism,2017,37(01):32.[doi:10.3760/cma.j.issn.1673-4157.2017.01.09]
[8]李吉隆,周杰,王宝利.microRNA-200c对3T3-L1前体脂肪细胞
向脂肪细胞分化的调控作用[J].国际内分泌代谢杂志,2017,37(02):73.[doi:10.3760/cma.j.issn.1673-4157.2017.02.001]
Li Jilong,Zhou Jie,Wang Baoli..The regulatory effects of microRNA-200c on the differentiation of 3T3-L1 preadipocytes to adipocytes[J].International Journal of Endocrinology and Metabolism,2017,37(01):73.[doi:10.3760/cma.j.issn.1673-4157.2017.02.001]
[9]梁绮君,胡晨鸣,黄容,等.山楂消脂胶囊对肥胖症患者炎性状态
及脂多糖水平的影响[J].国际内分泌代谢杂志,2017,37(04):236.
Liang Qijun,Hu Chenming,Huang Rong,et al.Effects of Shanzha xiaozhi capsule on inflammation and lipopolysaccharide level in obese patients[J].International Journal of Endocrinology and Metabolism,2017,37(01):236.
[10]马骥,都健.代谢手术影响骨代谢的机制研究[J].国际内分泌代谢杂志,2017,37(05):312.
Ma Ji,Du Jian..Mechanism study of effects of metabolic surgery on bone metabolism[J].International Journal of Endocrinology and Metabolism,2017,37(01):312.