[1]张群慧,陈明卫.miRNA与肥胖[J].国际内分泌代谢杂志,2017,37(01):35-38.[doi:10.3760/cma.j.issn.1673-4157.2017.01.10]
 Zhang Qunhui,Chen Mingwei..microRNA and obesity[J].International Journal of Endocrinology and Metabolism,2017,37(01):35-38.[doi:10.3760/cma.j.issn.1673-4157.2017.01.10]
点击复制

miRNA与肥胖()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
37
期数:
2017年01期
页码:
35-38
栏目:
综述
出版日期:
2017-01-20

文章信息/Info

Title:
microRNA and obesity
作者:
张群慧陈明卫
230022 合肥,安徽医科大学第一附属医院内分泌科
Author(s):
Zhang Qunhui Chen Mingwei.
Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Corresponding author: Chen Mingwei, Email:chmw1@163.com
关键词:
微小RNA 肥胖症 脂肪分化 脂代谢 炎症
Keywords:
miRNA Obesity Aidpose differentiation Lipid metabolism Inflammation
DOI:
10.3760/cma.j.issn.1673-4157.2017.01.10
摘要:
miRNA是一种内源性非编码小RNA,可与mRNA特异结合,通过转录后修饰调控基因表达。肥胖和非肥胖人群存在miRNA表达的区别,miRNA参与肥胖发展的多个过程,如脂肪分化、脂代谢等,可调节炎性反应、促进或抑制脂肪细胞分化。miRNA可以作为肥胖及其相关并发症的生物标志物,为肥胖相关疾病提供新的诊断和治疗策略。
Abstract:
miRNAs are a class of endogenous small non-coding RNAs, which can combine with mRNA specifically and regulate gene expression through post-transcriptional modification. Several miRNAs are differentially expressed between obese and non-obese people. miRNAs are associated with many processes in obesity, such as adipocyte differentiation and lipid metabolism. miRNAs can regulate inflammatory response, increase or inhibit adipose differentiation. They can be used as biomarkers of obesity and related complications, and may provide new strategies of diagnosis and treatment in obestity related diseases.

参考文献/References:

[1] Weber JA, Baxter DH, Zhang S,et al. The microRNA spectrum in 12 body fluids[J]. Clin Chem,2010,56(11):1733-1741. DOI: 10.1373/clinchem.2010.147405.
[2] Liu J, Liu W, Ying H,et al. Analysis of microRNA expression profile induced by AICAR in mouse hepatocytes[J].Gene,2013,512(2):364-372. DOI: 10.1016/j.gene.2012.09.118.
[3] Ortega FJ, Mercader JM, Moreno-Navarrete JM,et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization[J].Diabetes Care,2014,37(5):1375-1383. DOI: 10.2337/dc13-1847.
[4] Capobianco V, Nardelli C, Ferrigno M,et al. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity[J].J Proteome Res,2012,11(6):3358-3369. DOI: 10.1021/pr300152z.
[5] Hulsmans M, Sinnaeve P, Van der Schueren B, et al. Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease[J].J Clin Endocrinol Metab,2012,97(7):E1213-E1218. DOI: 10.1210/jc.2012-1008.
[6] Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome[J].Obes Rev,2010,11(5):354-361. DOI: 10.1111/j.1467-789X.2009.00659.x.
[7] Ortega FJ, Mercader JM, Catalán V,et al. Targeting the circulating microRNA signature of obesity[J].Clin Chem,2013,59(5):781-792. DOI: 10.1373/clinchem.2012.195776.
[8] Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism[J].J Lipid Res,2010,51(6):1513-1523. DOI: 10.1194/jlr.M004812.
[9] Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance[J].Trends Endocrinol Metab,2014,25(5):255-262. DOI: 10.1016/j.tem.2014.03.002.
[10] Johnson AM, Olefsky JM. The origins and drivers of insulin resistance[J].Cell,2013,152(4):673-684. DOI: 10.1016/j.cell.2013.01.041.
[11] Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance[J].Annu Rev Physiol,2010,72:219-246. DOI: 10.1146/annurev-physiol-021909-135846.
[12] Shi C, Zhu L, Chen X,et al. IL-6 and TNF-α induced obesity-related inflammatory response through transcriptional regulation of miR-146b[J].J Interferon Cytokine Res,2014,34(5):342-348. DOI: 10.1089/jir.2013.0078.
[13] Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat[J].Nature,2014,510(7503):76-83. DOI: 10.1038/nature13477.
[14] Townley-Tilson WH, Callis TE, Wang D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease[J].Int J Biochem Cell Biol, 2010,42(8):1252-1255. DOI: 10.1016/j.biocel.2009.03.002.
[15] Chen Y, Siegel F, Kipschull S,et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit[J].Nat Commun,2013,4:1769. DOI: 10.1038/ncomms2742.
[16] Zhu L, Chen L, Shi CM,et al. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation[J].Cell Biochem Biophys,2014,68(2):283-290. DOI: 10.1007/s12013-013-9708-3.
[17] Xu G, Ji C, Shi C,et al. Modulation of hsa-miR-26b levels following adipokine stimulation[J].Mol Biol Rep,2013,40(5):3577-3582. DOI: 10.1007/s11033-012-2431-0.
[18] Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation[J].RNA,2006,12(9):1626-1632.
[19] Takanabe R, Ono K, Abe Y,et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J].Biochem Biophys Res Commun,2008,376(4):728-732. DOI: 10.1016/j.bbrc.2008.09.050.
[20] Chen L, Hou J, Ye L, et al. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling[J].Sci Rep,2014,4:3819. DOI: 10.1038/srep03819.
[21] Ortega FJ, Moreno-Navarrete JM, Pardo G, et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation[J].PLoS One,2010,5(2):e9022. DOI: 10.1371/journal.pone.0009022.
[22] Neville MJ, Collins JM, Gloyn AL, et al. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization[J].Obesity(Silver Spring),2011,19(4):888-892. DOI: 10.1038/oby.2010.257.
[23] Kim SY, Kim AY, Lee HW,et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression[J].Biochem Biophys Res Commun,2010,392(3):323-338. DOI: 10.1016/j.bbrc.2010.01.012.
[24] Lee EK, Lee MJ, Abdelmohsen K,et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression[J].Mol Cell Biol,2011,31(4):626-638. DOI: 10.1128/MCB.00894-10.
[25] Kinoshita M, Ono K, Horie T, et al. Regulation of adipocyte differentiation by activation of serotonin(5-HT)receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5[J].Mol Endocrinol,2010,24(10):1978-1987. DOI: 10.1210/me.2010-0054.

相似文献/References:

[1]陈堃,刘超,陈国芳,等.糖尿病肾病诊断标志物研究进展[J].国际内分泌代谢杂志,2015,(03):176.[doi:10.3760/cma.j.issn.1673-4157.2015.03.009]
 Chen Kun,Liu Chao,Chen Guofang,et al.Urinary biomarkers for diabetic nephropathy[J].International Journal of Endocrinology and Metabolism,2015,(01):176.[doi:10.3760/cma.j.issn.1673-4157.2015.03.009]
[2]柯孟婷,孙家忠,李扬.3,5-二碘-L-甲状腺素对白色脂肪棕色化的作用[J].国际内分泌代谢杂志,2016,36(06):370.[doi:10.3760/cma.j.issn.1673-4157.2016.06.03]
 Ke Mengting*,Sun Jiazhong,Li Yang..Effects of 3,5-diiodo-L-thyronine on browning of white adipose tissue[J].International Journal of Endocrinology and Metabolism,2016,36(01):370.[doi:10.3760/cma.j.issn.1673-4157.2016.06.03]
[3]高胜利,郭菲菲,徐珞,等.Nesfatin-1与肥胖的关系[J].国际内分泌代谢杂志,2016,36(06):384.[doi:10.3760/cma.j.issn.1673-4157.2016.06.06]
 Gao Shengli,Guo Feifei,Xu Luo,et al.Relationship between nesfatin-1 and obesity[J].International Journal of Endocrinology and Metabolism,2016,36(01):384.[doi:10.3760/cma.j.issn.1673-4157.2016.06.06]
[4]杨曦,刘玉洁,马慧娟.生长分化因子15与肥胖及糖尿病[J].国际内分泌代谢杂志,2016,36(06):388.[doi:10.3760/cma.j.issn.1673-4157.2016.06.07]
 Yang Xi*,Liu Yujie,Ma Huijuan..Growth differentiation factor-15 and obesity, diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2016,36(01):388.[doi:10.3760/cma.j.issn.1673-4157.2016.06.07]
[5]刘玉洁,杨曦,马慧娟.MC4R在肥胖及糖代谢中的作用[J].国际内分泌代谢杂志,2016,36(06):391.[doi:10.3760/cma.j.issn.1673-4157.2016.06.08]
 Liu Yujie*,YangXi,Ma Huijuan..Role of MC4R in obesity and glucose metabolism[J].International Journal of Endocrinology and Metabolism,2016,36(01):391.[doi:10.3760/cma.j.issn.1673-4157.2016.06.08]
[6]姚旻,赵爱源,李红涛,等.人体肥胖指数在评价2型糖尿病患者 肥胖中的应用价值[J].国际内分泌代谢杂志,2017,37(01):1.[doi:10.3760/cma.j.issn.1673-4157.2017.01.01]
 Yao Min*,Zhao Aiyuan,Li Hongtao,et al.Body adiposity index and its value in obesity evaluation in patients with type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2017,37(01):1.[doi:10.3760/cma.j.issn.1673-4157.2017.01.01]
[7]严克敏,朱惠娟,龚凤英.雷公藤红素:一种潜在的治疗肥胖症的新药物[J].国际内分泌代谢杂志,2017,37(01):32.[doi:10.3760/cma.j.issn.1673-4157.2017.01.09]
 Yan Kemin,Zhu Huijuan,Gong Fengying..Celastrol:a potential and novel drug for obesity[J].International Journal of Endocrinology and Metabolism,2017,37(01):32.[doi:10.3760/cma.j.issn.1673-4157.2017.01.09]
[8]李吉隆,周杰,王宝利.microRNA-200c对3T3-L1前体脂肪细胞 向脂肪细胞分化的调控作用[J].国际内分泌代谢杂志,2017,37(02):73.[doi:10.3760/cma.j.issn.1673-4157.2017.02.001]
 Li Jilong,Zhou Jie,Wang Baoli..The regulatory effects of microRNA-200c on the differentiation of 3T3-L1 preadipocytes to adipocytes[J].International Journal of Endocrinology and Metabolism,2017,37(01):73.[doi:10.3760/cma.j.issn.1673-4157.2017.02.001]
[9]梁绮君,胡晨鸣,黄容,等.山楂消脂胶囊对肥胖症患者炎性状态 及脂多糖水平的影响[J].国际内分泌代谢杂志,2017,37(04):236.
 Liang Qijun,Hu Chenming,Huang Rong,et al.Effects of Shanzha xiaozhi capsule on inflammation and lipopolysaccharide level in obese patients[J].International Journal of Endocrinology and Metabolism,2017,37(01):236.
[10]马骥,都健.代谢手术影响骨代谢的机制研究[J].国际内分泌代谢杂志,2017,37(05):312.
 Ma Ji,Du Jian..Mechanism study of effects of metabolic surgery on bone metabolism[J].International Journal of Endocrinology and Metabolism,2017,37(01):312.

备注/Memo

备注/Memo:
通信作者:陈明卫,Email:chmw1@163.com
更新日期/Last Update: 2017-01-20