[1]杨婷,岳月仪,范雨佳,等.WISP1与骨质疏松症关系的研究进展[J].国际内分泌代谢杂志,2021,41(03):224-228.[doi:10.3760/cma.j.cn121383-20200417-04051]
 Yang Ting,Yue Yueyi,Fan Yujia,et al.Research progress on the relationship between WISP1 and osteoporosis[J].International Journal of Endocrinology and Metabolism,2021,41(03):224-228.[doi:10.3760/cma.j.cn121383-20200417-04051]
点击复制

WISP1与骨质疏松症关系的研究进展()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
41
期数:
2021年03期
页码:
224-228
栏目:
综述
出版日期:
2021-05-20

文章信息/Info

Title:
Research progress on the relationship between WISP1 and osteoporosis
作者:
杨婷岳月仪范雨佳鲁燕
苏州大学附属第一医院内分泌科 215006
Author(s):
Yang Ting Yue Yueyi Fan Yujia Lu Yan. Department of Endocrinology The First Affiliated Hospital of Soochow University Suzhou 215006 China
Corresponding author: Lu Yan, Email: lucia1817@163.com
关键词:
骨质疏松症 WISP1 成骨细胞 破骨细胞
Keywords:
Osteoporosis Wnt1-inducible signaling pathway protein 1 Osteoblast Osteoclast
DOI:
10.3760/cma.j.cn121383-20200417-04051
摘要:
骨质疏松症(osteoporosis,OP)的病因主要为由成骨细胞(osteoblast,OB)介导的骨形成与由破骨细胞(osteoclast,OC)介导的骨吸收之间的平衡失调,骨形成/骨吸收比例降低,导致进行性骨丢失。Wnt1诱导信号通路蛋白1(Wnt1-inducible signaling pathway protein 1,WISP1)是调控OB与OC分化及活性的关键调节因子,在骨骼发育及骨折愈合过程的各阶段表达,并通过诱导干细胞向OB分化、提高OB活性及抑制OC分化与形成等方式促进骨形成、抑制骨吸收,从而提高骨量。WISP1在骨骼系统的促进成骨作用使其成为OP潜在的治疗靶点。
Abstract:
The pathogenesis of osteoporosis is the imbalance between bone formation mediated by osteoblasts and bone resorption mediated by osteoclasts, which leading to continuous bone loss. Wnt1-inducible signaling pathway protein 1(WISP1)is a key regulator regulating the differentiation and activity of osteoblasts and osteoclasts. It is expressed at various stages of bone development and fracture healing, and promotes bone formation, inhibits bone resorption and increases bone mass by inducing stem cells to differentiate into osteoblasts, enhancing osteoblast activity and inhibiting osteoclast differentiation. The osteogenic effect of WISP1 in the skeletal system makes it a potential therapeutic target for osteoporosis.

参考文献/References:

[1] Yaribeygi H,Atkin SL,Sahebkar A. Wingless-type inducible signaling pathway protein-1(WISP1)adipokine and glucose homeostasis[J].J Cell Physiol,2019,234(10):16966-16970.DOI:10.1002/jcp.28412.
[2] Deng W,Fernandez A,Mclaughlin SL,et al. Wnt1-inducible signaling pathway protein 1(WISP1/CCN4)stimulates melanoma invasion and metastasis by promoting the epithelial-mesenchymal transition[J].J Biol Chem,2019,294(14): 5261-5280.DOI:10.1074/jbc.RA118.006122.
[3] Wang X,Salimi S,Deng Z,et al. Evaluation of WISP1 as a candidate gene for bone mineral density in the Old Order Amish[J].Sci Rep,2018,8(1): 7141.DOI:10.1038/s41598-018-25272-4.
[4] 王星. 骨形态发生蛋白9(BMP9)促进骨质疏松骨折的创伤愈合[D]. 重庆:重庆医科大学,2017.83-88.
[5] Maeda A,Ono M,Holmbeck K,et al. Wnt1-induced secreted protein-1(WISP1),a novel regulator of bone turnover and Wnt signaling[J].J Biol Chem,2015,290(22):14004-14018.DOI:10.1074/jbc.M114.628818.
[6] Ono M,Inkson CA,Kilts TM,et al. WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity[J].J Bone Miner Res,2011,26(1):193-208.DOI:10.1002/jbmr.205.
[7] Inkson CA,Ono M,Kuznetsov SA,et al. TGF-beta1 and WISP-1/CCN-4 can regulate each other's activity to cooperatively control osteoblast function[J].J Cell Biochem,2008,104(5):1865-1878.DOI:10.1002/jcb.21754.
[8] French DM,Kaul RJ,D'souza AL,et al. WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair[J].Am J Pathol,2004,165(3):855-867.DOI:10.1016/S0002-9440(10)63348-2.
[9] Meyers CA,Xu J,Asatrian G,et al. WISP-1 drives bone formation at the expense of fat formation in human perivascular stem cells[J].Sci Rep,2018,8(1):15618.DOI:10.1038/s41598-018-34143-x.
[10] Nioi P,Taylor S,Hu R,et al. Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats[J].J Bone Miner Res,2015,30(8):1457-1467.DOI:10.1002/jbmr.2482.
[11] Surowiec RK,Battle LF,Schlecht SH,et al. Gene expression profile and acute gene expression response to sclerostin inhibition in osteogenesis imperfecta bone[J].JBMR Plus,2020,4(8): e10377.DOI:10.1002/jbm4.10377.
[12] Kawaki H,Kubota S,Suzuki A,et al. Differential roles of CCN family proteins during osteoblast differentiation: Involvement of Smad and MAPK signaling pathways[J].Bone,2011,49(5):975-989.DOI:10.1016/j.bone.2011.06.033.
[13] Van den Bosch MH,Blom AB,Van Lent PL,et al. Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8[J].Cell Signal,2014,26(5):951-958.DOI:10.1016/j.cellsig.2014.01.021.
[14] Saidak Z,Le Henaff C,Azzi S,et al. Low-dose PTH increases osteoblast activity via decreased Mef2c/Sost in senescent osteopenic mice[J].J Endocrinol,2014,223(1):25-33.DOI:10.1530/JOE-14-0249.
[15] Jilka RL,O'brien CA,Bartell SM,et al. Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and-independent mechanisms[J].J Bone Miner Res,2010,25(11):2427-2437.DOI:10.1002/jbmr.145.
[16] Case N,Xie Z,Sen B,et al. Mechanical activation of β-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells[J].J Orthop Res,2010,28(11):1531-1538.DOI:10.1002/jor.21156.
[17] Albers J,Keller J,Baranowsky A,et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin[J].J Cell Biol,2013,200(4):537-549.DOI:10.1083/jcb.201207142.
[18] Chang AC,Chen PC,Lin YF,et al. Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system[J].Cancer Lett,2018,426:47-56.DOI:10.1016/j.canlet.2018.03.050.
[19] Macsai CE,Georgiou KR,Foster BK,et al. Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair[J].Bone,2012,50(5):1081-1091.DOI:10.1016/j.bone.2012.02.013.
[20] 胡咏新,郑仁东,刘洲君,等. 2017年骨质疏松年度进展[J].国际内分泌代谢杂志,2018,38(6):423-425. DOI:10.3760/cma.j.issn.1673-4157.2018.06.016.
[21] Guo T,Cao G,Li Y,et al. Signals in stem cell differentiation on fluorapatite-modified scaffolds[J].J Dent Res,2018,97(12):1331-1338.DOI:10.1177/0022034518788037.
[22] Kohara H,Tabata Y. Enhancement of ectopic osteoid formation following the dual release of bone morphogenetic protein 2 and Wnt1 inducible signaling pathway protein 1 from gelatin sponges[J].Biomaterials,2011,32(24):5726-5732.DOI:10.1016/j.biomaterials.2011.04.035.

相似文献/References:

[1]陈时锦 郭晓萍.WISP1在糖尿病中的作用[J].国际内分泌代谢杂志,2019,39(06):419.[doi:10.3760/cma.j.issn.1673-4157.2019.06.014]
 Chen Shijin,Guo Xiaoping.Role of WISP1 in diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2019,39(03):419.[doi:10.3760/cma.j.issn.1673-4157.2019.06.014]
[2]齐保玉,魏戌,朱立国,等.血管生成在骨代谢及骨质疏松症中的作用研究进展[J].国际内分泌代谢杂志,2021,41(02):128.[doi:10.3760/cma.j.cn121383-20200326-03066]
 Qi Baoyu,Wei Xu,Zhu Liguo,et al.Research progress on the role of angiogenesis in bone metabolism and osteoporosis[J].International Journal of Endocrinology and Metabolism,2021,41(03):128.[doi:10.3760/cma.j.cn121383-20200326-03066]
[3]晁爱军.地舒单抗和罗莫佐单抗治疗骨质疏松症的进展及展望[J].国际内分泌代谢杂志,2023,43(04):283.[doi:10.3760/cma.j.cn121383-20230708-07013]
 Chao Aijun.Progress and prospects of denosumab and romosozumab in osteoporosis treatment[J].International Journal of Endocrinology and Metabolism,2023,43(03):283.[doi:10.3760/cma.j.cn121383-20230708-07013]
[4]杨泓娟,龚恬,项守奎.皮肤与骨质疏松症[J].国际内分泌代谢杂志,2024,44(03):202.[doi:10.3760/cma.j.cn121383-20230830-08074]
 Yang Hongjuan,Gong Tian,Xiang Shoukui..Skin and Osteoporosis[J].International Journal of Endocrinology and Metabolism,2024,44(03):202.[doi:10.3760/cma.j.cn121383-20230830-08074]

备注/Memo

备注/Memo:
通信作者:鲁燕,Email: lucia1817@163.com 基金项目:苏州市民生科技项目(SYS2020073)
更新日期/Last Update: 2021-05-20