参考文献/References:
[1] Yaribeygi H,Atkin SL,Sahebkar A. Wingless-type inducible signaling pathway protein-1(WISP1)adipokine and glucose homeostasis[J].J Cell Physiol,2019,234(10):16966-16970.DOI:10.1002/jcp.28412.
[2] Deng W,Fernandez A,Mclaughlin SL,et al. Wnt1-inducible signaling pathway protein 1(WISP1/CCN4)stimulates melanoma invasion and metastasis by promoting the epithelial-mesenchymal transition[J].J Biol Chem,2019,294(14): 5261-5280.DOI:10.1074/jbc.RA118.006122.
[3] Wang X,Salimi S,Deng Z,et al. Evaluation of WISP1 as a candidate gene for bone mineral density in the Old Order Amish[J].Sci Rep,2018,8(1): 7141.DOI:10.1038/s41598-018-25272-4.
[4] 王星. 骨形态发生蛋白9(BMP9)促进骨质疏松骨折的创伤愈合[D]. 重庆:重庆医科大学,2017.83-88.
[5] Maeda A,Ono M,Holmbeck K,et al. Wnt1-induced secreted protein-1(WISP1),a novel regulator of bone turnover and Wnt signaling[J].J Biol Chem,2015,290(22):14004-14018.DOI:10.1074/jbc.M114.628818.
[6] Ono M,Inkson CA,Kilts TM,et al. WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity[J].J Bone Miner Res,2011,26(1):193-208.DOI:10.1002/jbmr.205.
[7] Inkson CA,Ono M,Kuznetsov SA,et al. TGF-beta1 and WISP-1/CCN-4 can regulate each other's activity to cooperatively control osteoblast function[J].J Cell Biochem,2008,104(5):1865-1878.DOI:10.1002/jcb.21754.
[8] French DM,Kaul RJ,D'souza AL,et al. WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair[J].Am J Pathol,2004,165(3):855-867.DOI:10.1016/S0002-9440(10)63348-2.
[9] Meyers CA,Xu J,Asatrian G,et al. WISP-1 drives bone formation at the expense of fat formation in human perivascular stem cells[J].Sci Rep,2018,8(1):15618.DOI:10.1038/s41598-018-34143-x.
[10] Nioi P,Taylor S,Hu R,et al. Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats[J].J Bone Miner Res,2015,30(8):1457-1467.DOI:10.1002/jbmr.2482.
[11] Surowiec RK,Battle LF,Schlecht SH,et al. Gene expression profile and acute gene expression response to sclerostin inhibition in osteogenesis imperfecta bone[J].JBMR Plus,2020,4(8): e10377.DOI:10.1002/jbm4.10377.
[12] Kawaki H,Kubota S,Suzuki A,et al. Differential roles of CCN family proteins during osteoblast differentiation: Involvement of Smad and MAPK signaling pathways[J].Bone,2011,49(5):975-989.DOI:10.1016/j.bone.2011.06.033.
[13] Van den Bosch MH,Blom AB,Van Lent PL,et al. Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8[J].Cell Signal,2014,26(5):951-958.DOI:10.1016/j.cellsig.2014.01.021.
[14] Saidak Z,Le Henaff C,Azzi S,et al. Low-dose PTH increases osteoblast activity via decreased Mef2c/Sost in senescent osteopenic mice[J].J Endocrinol,2014,223(1):25-33.DOI:10.1530/JOE-14-0249.
[15] Jilka RL,O'brien CA,Bartell SM,et al. Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and-independent mechanisms[J].J Bone Miner Res,2010,25(11):2427-2437.DOI:10.1002/jbmr.145.
[16] Case N,Xie Z,Sen B,et al. Mechanical activation of β-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells[J].J Orthop Res,2010,28(11):1531-1538.DOI:10.1002/jor.21156.
[17] Albers J,Keller J,Baranowsky A,et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin[J].J Cell Biol,2013,200(4):537-549.DOI:10.1083/jcb.201207142.
[18] Chang AC,Chen PC,Lin YF,et al. Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system[J].Cancer Lett,2018,426:47-56.DOI:10.1016/j.canlet.2018.03.050.
[19] Macsai CE,Georgiou KR,Foster BK,et al. Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair[J].Bone,2012,50(5):1081-1091.DOI:10.1016/j.bone.2012.02.013.
[20] 胡咏新,郑仁东,刘洲君,等. 2017年骨质疏松年度进展[J].国际内分泌代谢杂志,2018,38(6):423-425. DOI:10.3760/cma.j.issn.1673-4157.2018.06.016.
[21] Guo T,Cao G,Li Y,et al. Signals in stem cell differentiation on fluorapatite-modified scaffolds[J].J Dent Res,2018,97(12):1331-1338.DOI:10.1177/0022034518788037.
[22] Kohara H,Tabata Y. Enhancement of ectopic osteoid formation following the dual release of bone morphogenetic protein 2 and Wnt1 inducible signaling pathway protein 1 from gelatin sponges[J].Biomaterials,2011,32(24):5726-5732.DOI:10.1016/j.biomaterials.2011.04.035.
相似文献/References:
[1]陈时锦 郭晓萍.WISP1在糖尿病中的作用[J].国际内分泌代谢杂志,2019,39(06):419.[doi:10.3760/cma.j.issn.1673-4157.2019.06.014]
Chen Shijin,Guo Xiaoping.Role of WISP1 in diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2019,39(03):419.[doi:10.3760/cma.j.issn.1673-4157.2019.06.014]
[2]齐保玉,魏戌,朱立国,等.血管生成在骨代谢及骨质疏松症中的作用研究进展[J].国际内分泌代谢杂志,2021,41(02):128.[doi:10.3760/cma.j.cn121383-20200326-03066]
Qi Baoyu,Wei Xu,Zhu Liguo,et al.Research progress on the role of angiogenesis in bone metabolism and osteoporosis[J].International Journal of Endocrinology and Metabolism,2021,41(03):128.[doi:10.3760/cma.j.cn121383-20200326-03066]
[3]晁爱军.地舒单抗和罗莫佐单抗治疗骨质疏松症的进展及展望[J].国际内分泌代谢杂志,2023,43(04):283.[doi:10.3760/cma.j.cn121383-20230708-07013]
Chao Aijun.Progress and prospects of denosumab and romosozumab in osteoporosis treatment[J].International Journal of Endocrinology and Metabolism,2023,43(03):283.[doi:10.3760/cma.j.cn121383-20230708-07013]
[4]杨泓娟,龚恬,项守奎.皮肤与骨质疏松症[J].国际内分泌代谢杂志,2024,44(03):202.[doi:10.3760/cma.j.cn121383-20230830-08074]
Yang Hongjuan,Gong Tian,Xiang Shoukui..Skin and Osteoporosis[J].International Journal of Endocrinology and Metabolism,2024,44(03):202.[doi:10.3760/cma.j.cn121383-20230830-08074]