参考文献/References:
[1] Antonelli A,Ferrari SM,Corrado A,et al.Autoimmune thyroid disorders[J].Autoimmun Rev,2015,14(2):174-180.DOI:10.1016/j.autrev.2014.10.016.
[2] Morshed SA,Latif R,Davies TF.Delineating the autoimmune mechanisms in Graves' disease[J].Immunol Res,2012,54(1-3):191-203.DOI:10.1007/s12026-012-8312-8.
[3] Feinberg AP.The key role of epigenetics in human disease prevention and mitigation[J].N Engl J Med,2018,378(14):1323-1334.DOI:10.1056/NEJMra1402513.
[4] Hirst M,Marra MA.Epigenetics and human disease[J].Int J Biochem Cell Biol,2009,41(1):136-146.DOI:10.1016/j.biocel.2008.09.011.
[5] Portela A,Esteller M.Epigenetic modifications and human disease[J].Nat Biotechnol,2010,28(10):1057-1068.DOI:10.1038/nbt.1685.
[6] Kuroda A,Rauch TA,Todorov I,et al.Insulin gene expression is regulated by DNA methylation[J].PLoS One,2009,4(9):e6953.DOI:10.1371/journal.pone.0006953.
[7] Esteller M.Epigenetic gene silencing in cancer: the DNA hypermethylome[J].Hum Mol Genet,2007,16(1):R50-R59.DOI:10.1093/hmg/ddm018.
[8] Lopez-Serra L,Esteller M.Proteins that bind methylated DNA and human cancer: reading the wrong words[J].Br J Cancer,2008,98(12):1881-1885.DOI:10.1038/sj.bjc.6604374.
[9] Richardson B.DNA methylation and autoimmune disease[J].Clin Immunol,2003,109(1):72-79.DOI:10.1016/s1521-6616(03)00206-7.
[10] Ballestar E.Epigenetic alterations in autoimmune rheumatic diseases[J].Nat Rev Rheumatol,2011,7(5):263-271.DOI:10.1038/nrrheum.2011.16.
[11] Sun B,Hu L,Luo ZY,et al.DNA methylation perspectives in the pathogenesis of autoimmune diseases[J].Clin Immunol,2016,164:21-27.DOI:10.1016/j.clim.2016.01.011.
[12] Cai TT,Muhali FS,Song RH,et al.Genome-wide DNA methylation analysis in Graves' disease[J].Genomics,2015,105(4):204-210.DOI:10.1016/j.ygeno.2015.01.001.
[13] Liu T,Sun J,Wang Z,et al.Changes in the DNA methylation and hydroxymethylation status of the intercellular adhesion molecule 1 gene promoter in thyrocytes from autoimmune thyroiditis patients[J].Thyroid,2017,27(6):838-845.DOI:10.1089/thy.2016.0576.
[14] Guo Q,Wu D,Yu H,et al. Alterations of global DNA methylation and DNA methyltransferase expression in T and B lymphocytes from patients with newly diagnosed autoimmune thyroid diseases after treatment: a follow-up study[J].Thyroid,2018,28(3):377-385.DOI:10.1089/thy.2017.0301.
[15] Limbach M,Saare M,Tserel L,et al.Epigenetic profiling in CD4+ and CD8+ T cells from Graves' disease patients reveals changes in genes associated with T cell receptor signaling[J].J Autoimmun,2016,67:46-56. DOI:10.1016/j.jaut.2015.09.006.
[16] Arakawa Y,Watanabe M,Inoue N,et al.Association of polymorphisms in DNMT1,DNMT3A,DNMT3B,MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease[J].Clin Exp Immunol,2012,170(2):194-201.DOI:10.1111/j.1365-2249.2012.04646.x.
[17] Yamada H,Watanabe M,Nanba T,et al.The +869T/C polymorphism in the transforming growth factor-beta1 gene is associated with the severity and intractability of autoimmune thyroid disease[J].Clin Exp Immunol,2008,151(3):379-382.DOI:10.1111/j.1365-2249.2007.03575.x.
[18] Hayashi F,Watanabe M,Nanba T,et al.Association of the -31C/T functional polymorphism in the interleukin-1beta gene with the intractability of Graves' disease and the proportion of T helper type 17 cells[J].Clin Exp Immunol,2009,158(3):281-286.DOI:10.1111/j.1365-2249.2009.04034.x.
[19] Mao R,Fan Y,Zuo L,et al.Association study between methylenetetrahydrofolate reductase gene polymorphisms and Graves' disease[J].Cell Biochem Funct,2010,28(7):585-590.DOI:10.1002/cbf.1694.
[20] Stern LL,Mason JB,Selhub J,et al.Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene[J].Cancer Epidemiol Biomarkers Prev,2000,9(8):849-853.
[21] Cai TT,Zhang J,Wang X,et al.Gene-gene and gene-sex epistatic interactions of DNMT1, DNMT3A and DNMT3B in autoimmunethyroid disease[J].Endocr J,2016,63(7):643-653.DOI:10.1507/endocrj.EJ15-0596.
[22] Zhao Y,Garcia BA.Comprehensive catalog of currently documented histone modifications[J].Cold Spring Harb Perspect Biol,2015,7(9):a025064.DOI:10.1101/cshperspect.a025064.
[23] Zoghbi HY,Beaudet AL.Epigenetics and human disease[J].Cold Spring Harb Perspect Biol,2016,8(2):a019497.DOI:10.1101/cshperspect.a019497.
[24] Berger SL.The complex language of chromatin regulation during transcription[J].Nature,2007,447(7143):407-412.DOI:10.1038/nature05915.
[25] Yan N,Zhou JZ,Zhang JA,et al.Histone hypoacetylation and increased histone deacetylases in peripheral blood mononuclear cells from patients with Graves' disease[J].Mol Cell Endocrinol,2015,414:143-147.DOI:10.1016/j.mce.2015.05.037.
[26] Wang Z,Zang C,Cui K,et al.Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes[J].Cell,2009,138(5):1019-1031.DOI:10.1016/j.cell.2009.06.049.
[27] Cao H,Li L,Yang D,et al.Recent progress in histone methyltransferase(G9a)inhibitors as anticancer agents[J].Eur J Med Chem,2019,179:537-546.DOI:10.1016/j.ejmech.2019.06.072.
[28] Stefan M,Jacobson EM,Huber AK,et al.Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism[J].J Biol Chem,2011,286(36):31168-31179.DOI:10.1074/jbc.M111.247510.
[29] Mattick JS.Non-coding RNAs: the architects of eukaryotic complexity[J].EMBO Rep,2001,2(11):986-991.DOI:10.1093/embo-reports/kve230.
[30] Dorris ER,Smyth P,O'Leary JJ,et al.MIR141 expression differentiates Hashimoto thyroiditis from PTC and benign thyrocytes in irish archival thyroid tissues[J].Front Endocrinol(Lausanne),2012,3:102. DOI:10.3389/fendo.2012.00102.
[31] Qin Q,Wang X,Yan N,et al.Aberrant expression of miRNA and mRNAs in lesioned tissues of Graves' disease[J].Cell Physiol Biochem,2015,35(5):1934-1942.DOI:10.1159/000374002.
[32] Qi Y,Zhou Y,Chen X,et al.MicroRNA-4443 causes CD4+ T cells dysfunction by targeting TNFR-associated factor 4 in Graves' disease[J].Front Immunol,2017,8:1440.DOI:10.3389/fimmu.2017.01440.
[33] Liu R,Ma X,Xu L,et al.Differential microRNA expression in peripheral blood mononuclear cells from Graves' disease patients[J].J Clin Endocrinol Metab,2012,97(6):E968-E972. DOI:10.1210/jc.2011-2982.
[34] Yamada H,Itoh M,Hiratsuka I,et al.Circulating microRNAs in autoimmune thyroid diseases[J].Clin Endocrinol(Oxf),2014,81(2):276-281.DOI:10.1111/cen.12432.
[35] Bernecker C,Halim F,Lenz L,et al.microRNA expressions in CD4+ and CD8+ T-cell subsets in autoimmune thyroid diseases[J].Exp Clin Endocrinol Diabetes,2014,122(2):107-112.DOI:10.1055/s-0033-1361088.
[36] Martínez-Hernández R,Sampedro-Núñez M,Serrano-Somavilla A,et al.A microRNA signature for evaluation of risk and severity of autoimmune thyroid diseases[J].J Clin Endocrinol Metab,2018,103(3):1139-1150.DOI:10.1210/jc.2017-02318.
[37] Li K,Du Y,Jiang BL,et al.Increased microRNA-155 and decreased microRNA-146a may promote ocular inflammation and proliferation in Graves' ophthalmopathy[J].Med Sci Monit,2014,20:639-643.DOI:10.12659/MSM.890686.
[38] Wei H,Guan M,Qin Y,et al.Circulating levels of miR-146a and IL-17 are significantly correlated with the clinical activity of Graves' ophthalmopathy[J].Endocr J,2014,61(11):1087-1092.DOI:10.1507/endocrj.ej14-0246.
[39] Peng H,Liu Y,Tian J,et al.Decreased expression of microRNA-125a-3p upregulates interleukin-23 receptor in patients with Hashimoto's thyroiditis[J].Immunol Res,2015,62(2):129-136.DOI:10.1007/s12026-015-8643-3.
[40] Chen J,Tian J,Tang X,et al.MiR-346 regulates CD4+CXCR5+ T cells in the pathogenesis of Graves' disease[J].Endocrine,2015,49(3):752-760.DOI:10.1007/s12020-015-0546-5.
[41] Kagawa T,Watanabe M,Inoue N,et al.Increases of microRNA let-7e in peripheral blood mononuclear cells in Hashimoto's disease[J].Endocr J,2016,63(4):375-380.DOI:10.1507/endocrj.EJ15-0577.
[42] Inoue Y,Watanabe M,Inoue N,et al.Associations of single nucleotide polymorphisms in precursor-microRNA(miR)-125a and the expression of mature miR-125a with the development and prognosis of autoimmune thyroid diseases[J].Clin Exp Immunol,2014,178(2):229-235.DOI:10.1111/cei.12410.
[43] Zhu J,Zhang Y,Zhang W,et al.MicroRNA-142-5p contributes to Hashimoto's thyroiditis by targeting CLDN1[J].J Transl Med,2016,14(1):166.DOI:10.1186/s12967-016-0917-6.
[44] Perkel JM. Visiting "noncodarnia"[J].Biotechniques,2013,54(6):301, 303-304. DOI:10.2144/000114037.
[45] Rinn JL,Kertesz M,Wang JK,et al.Functional demarcation of active and silent chromatin domains in human HOX loci by noncodingRNAs[J].Cell,2007,129(7):1311-1323.DOI:10.1016/j.cell.2007.05.022.
[46] Wellcome Trust Case Control Consortium.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls[J].Nature,2007,447(7145):661-678.DOI:10.1038/nature05911.
[47] Matsui M,Corey DR.Non-coding RNAs as drug targets[J].Nat Rev Drug Discov,2017,16(3):167-179.DOI:10.1038/nrd.2016.117.
[48] Shirasawa S,Harada H,Furugaki K,et al.SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT,determine susceptibility to autoimmune thyroid disease[J].Hum Mol Genet,2004,13(19):2221-2231.DOI:10.1093/hmg/ddh245.
[49] Zhao SX,Xue LQ,Liu W,et al.Robust evidence for five new Graves' disease risk loci from a staged genome-wide associationanalysis[J].Hum Mol Genet,2013,22(16):3347-3362.DOI:10.1093/hmg/ddt183.
[50] Peng H,Liu Y,Tian J,et al. The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto's thyroiditis[J].Sci Rep,2015,5:17702.DOI: 10.1038/srep17702.
相似文献/References:
[1]朱丹,陈国芳,刘超,等.糖尿病患者合并甲状腺功能异常的机制
及其影响[J].国际内分泌代谢杂志,2016,36(03):206.[doi:10.3760/cma.j.issn.1673-4157.2016.03.16]
Zhu Dan*,Chen Guofang,Liu Chao,et al.Mechanisms of diabetes combined with thyroid dysfunction and its influence[J].International Journal of Endocrinology and Metabolism,2016,36(03):206.[doi:10.3760/cma.j.issn.1673-4157.2016.03.16]
[2]房方,卫红艳,王坤玲,等.硒治疗自身免疫性甲状腺疾病的荟萃分析[J].国际内分泌代谢杂志,2016,36(04):247.[doi:10.3760/cma.j.issn.1673-4157.2016.04.09]
Fang Fang,Wei Hongyan,Wang Kunling,et al.A meta-analysis of selenium in the treatment of autoimmune thyroid diseases[J].International Journal of Endocrinology and Metabolism,2016,36(03):247.[doi:10.3760/cma.j.issn.1673-4157.2016.04.09]
[3]郑慧娟,魏璠,魏军平.自噬与自身免疫性甲状腺疾病[J].国际内分泌代谢杂志,2017,37(01):17.[doi:10.3760/cma.j.issn.1673-4157.2017.01.05]
Zheng Huijuan,Wei Fan,Wei Junping..Autophagy and autoimmune thyroid disease[J].International Journal of Endocrinology and Metabolism,2017,37(03):17.[doi:10.3760/cma.j.issn.1673-4157.2017.01.05]
[4]司马盼盼 孙良阁.多囊卵巢综合征与自身免疫性甲状腺疾病的相关性[J].国际内分泌代谢杂志,2018,38(03):163.[doi:10.3760/cma.j.issn.1673-4157.2018.03.005]
Sima Panpan,Sun Liangge..Correlation between polycystic ovary syndrome and autoimmune thyroid disease[J].International Journal of Endocrinology and Metabolism,2018,38(03):163.[doi:10.3760/cma.j.issn.1673-4157.2018.03.005]
[5]相萍萍 刘超.滤泡辅助性T细胞、滤泡调节性T细胞与自身免疫性
甲状腺疾病[J].国际内分泌代谢杂志,2019,39(03):168.[doi:10.3760/cma.j.issn.1673-4157.2019.03.006]
Xiang Pingping,Liu Chao.T foliicular helper cells, T follicular regulatory cells and autoimmune thyroid disease[J].International Journal of Endocrinology and Metabolism,2019,39(03):168.[doi:10.3760/cma.j.issn.1673-4157.2019.03.006]
[6]梁杏燕,赵捷,马红霞.自身免疫性甲状腺疾病对多囊卵巢综合征不良妊娠结局的影响[J].国际内分泌代谢杂志,2022,42(06):481.[doi:10.3760/cma.j.cn121383-20211016-10036]
Liang Xingyan,Zhao Jie,Ma Hongxia..Influence of autoimmune thyroid disease on adverse pregnant outcome in polycystic ovary syndrome[J].International Journal of Endocrinology and Metabolism,2022,42(03):481.[doi:10.3760/cma.j.cn121383-20211016-10036]