[1]杨小颖 唐露霖 尚文斌.表观遗传修饰在自身免疫性甲状腺疾病发病中的作用[J].国际内分泌代谢杂志,2020,40(03):169-174.[doi:10.3760/cma.j.issn.1673-4157.2020.03.006]
 Yang Xiao-ying,Tang Lulin,Shang Wenbin.The role of epigenetic modification in the pathogenesis of autoimmune thyroid disease[J].International Journal of Endocrinology and Metabolism,2020,40(03):169-174.[doi:10.3760/cma.j.issn.1673-4157.2020.03.006]
点击复制

表观遗传修饰在自身免疫性甲状腺疾病发病中的作用()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
40
期数:
2020年03期
页码:
169-174
栏目:
综述
出版日期:
2020-05-20

文章信息/Info

Title:
The role of epigenetic modification in the pathogenesis of autoimmune thyroid disease
作者:
杨小颖 唐露霖 尚文斌
南京中医药大学第一临床医学院代谢病中医研究重点实验室 210023
Author(s):
Yang Xiao-ying Tang Lulin Shang Wenbin
Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
关键词:
表观遗传修饰 自身免疫性甲状腺疾病 发病机制
Keywords:
Epigenetic modifications Autoimmune thyroid diseases Pathogenesis
DOI:
10.3760/cma.j.issn.1673-4157.2020.03.006
摘要:
表观遗传修饰主要包括DNA甲基化、组蛋白修饰(乙酰化、甲基化、磷酸化、泛素化等)以及非编码RNAs作用等,它可以在不改变DNA序列的情况下影响基因转录活性。这些修饰对染色体结构的稳定性及基因的表达可能会有一定的影响。近年来越来越多的研究表明,表观遗传修饰在自身免疫性甲状腺疾病(Graves病和桥本甲状腺炎)的发病机制中发挥重要作用,这为自身免疫性甲状腺疾病的发病机制打开一个新的视角。进一步深入探索表观遗传修饰在自身免疫性甲状腺疾病发病中的作用,可以为该疾病的诊疗提供新的研究策略和思路。
Abstract:
Epigenetic modifications regulates gene expression without changing DNA sequences in some different ways, which include DNA methylation, histone modifications involving methylation, acetylation, phosphorylation, ubiquitylation, and non-coding RNAs. Each modification may influence the structure of chromatin and gene expression. In recent years, more and more researches show that epigenetic modifications play important roles in the pathogenesis of autoimmune thyroid diseases(Graves' disease, Hashimoto's thyroiditis), which opens a new perspective for the pathogenesis of autoimmune thyroid diseases. Further studies are needed to explore the action of epigenetic modifications on the onset of autoimmune thyroid disease which will provide new research strategies for the diagnosis and treatment of autoimmune thyroid disease.

参考文献/References:

[1] Antonelli A,Ferrari SM,Corrado A,et al.Autoimmune thyroid disorders[J].Autoimmun Rev,2015,14(2):174-180.DOI:10.1016/j.autrev.2014.10.016.
[2] Morshed SA,Latif R,Davies TF.Delineating the autoimmune mechanisms in Graves' disease[J].Immunol Res,2012,54(1-3):191-203.DOI:10.1007/s12026-012-8312-8.
[3] Feinberg AP.The key role of epigenetics in human disease prevention and mitigation[J].N Engl J Med,2018,378(14):1323-1334.DOI:10.1056/NEJMra1402513.
[4] Hirst M,Marra MA.Epigenetics and human disease[J].Int J Biochem Cell Biol,2009,41(1):136-146.DOI:10.1016/j.biocel.2008.09.011.
[5] Portela A,Esteller M.Epigenetic modifications and human disease[J].Nat Biotechnol,2010,28(10):1057-1068.DOI:10.1038/nbt.1685.
[6] Kuroda A,Rauch TA,Todorov I,et al.Insulin gene expression is regulated by DNA methylation[J].PLoS One,2009,4(9):e6953.DOI:10.1371/journal.pone.0006953.
[7] Esteller M.Epigenetic gene silencing in cancer: the DNA hypermethylome[J].Hum Mol Genet,2007,16(1):R50-R59.DOI:10.1093/hmg/ddm018.
[8] Lopez-Serra L,Esteller M.Proteins that bind methylated DNA and human cancer: reading the wrong words[J].Br J Cancer,2008,98(12):1881-1885.DOI:10.1038/sj.bjc.6604374.
[9] Richardson B.DNA methylation and autoimmune disease[J].Clin Immunol,2003,109(1):72-79.DOI:10.1016/s1521-6616(03)00206-7.
[10] Ballestar E.Epigenetic alterations in autoimmune rheumatic diseases[J].Nat Rev Rheumatol,2011,7(5):263-271.DOI:10.1038/nrrheum.2011.16.
[11] Sun B,Hu L,Luo ZY,et al.DNA methylation perspectives in the pathogenesis of autoimmune diseases[J].Clin Immunol,2016,164:21-27.DOI:10.1016/j.clim.2016.01.011.
[12] Cai TT,Muhali FS,Song RH,et al.Genome-wide DNA methylation analysis in Graves' disease[J].Genomics,2015,105(4):204-210.DOI:10.1016/j.ygeno.2015.01.001.
[13] Liu T,Sun J,Wang Z,et al.Changes in the DNA methylation and hydroxymethylation status of the intercellular adhesion molecule 1 gene promoter in thyrocytes from autoimmune thyroiditis patients[J].Thyroid,2017,27(6):838-845.DOI:10.1089/thy.2016.0576.
[14] Guo Q,Wu D,Yu H,et al. Alterations of global DNA methylation and DNA methyltransferase expression in T and B lymphocytes from patients with newly diagnosed autoimmune thyroid diseases after treatment: a follow-up study[J].Thyroid,2018,28(3):377-385.DOI:10.1089/thy.2017.0301.
[15] Limbach M,Saare M,Tserel L,et al.Epigenetic profiling in CD4+ and CD8+ T cells from Graves' disease patients reveals changes in genes associated with T cell receptor signaling[J].J Autoimmun,2016,67:46-56. DOI:10.1016/j.jaut.2015.09.006.
[16] Arakawa Y,Watanabe M,Inoue N,et al.Association of polymorphisms in DNMT1,DNMT3A,DNMT3B,MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease[J].Clin Exp Immunol,2012,170(2):194-201.DOI:10.1111/j.1365-2249.2012.04646.x.
[17] Yamada H,Watanabe M,Nanba T,et al.The +869T/C polymorphism in the transforming growth factor-beta1 gene is associated with the severity and intractability of autoimmune thyroid disease[J].Clin Exp Immunol,2008,151(3):379-382.DOI:10.1111/j.1365-2249.2007.03575.x.
[18] Hayashi F,Watanabe M,Nanba T,et al.Association of the -31C/T functional polymorphism in the interleukin-1beta gene with the intractability of Graves' disease and the proportion of T helper type 17 cells[J].Clin Exp Immunol,2009,158(3):281-286.DOI:10.1111/j.1365-2249.2009.04034.x.
[19] Mao R,Fan Y,Zuo L,et al.Association study between methylenetetrahydrofolate reductase gene polymorphisms and Graves' disease[J].Cell Biochem Funct,2010,28(7):585-590.DOI:10.1002/cbf.1694.
[20] Stern LL,Mason JB,Selhub J,et al.Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene[J].Cancer Epidemiol Biomarkers Prev,2000,9(8):849-853.
[21] Cai TT,Zhang J,Wang X,et al.Gene-gene and gene-sex epistatic interactions of DNMT1, DNMT3A and DNMT3B in autoimmunethyroid disease[J].Endocr J,2016,63(7):643-653.DOI:10.1507/endocrj.EJ15-0596.
[22] Zhao Y,Garcia BA.Comprehensive catalog of currently documented histone modifications[J].Cold Spring Harb Perspect Biol,2015,7(9):a025064.DOI:10.1101/cshperspect.a025064.
[23] Zoghbi HY,Beaudet AL.Epigenetics and human disease[J].Cold Spring Harb Perspect Biol,2016,8(2):a019497.DOI:10.1101/cshperspect.a019497.
[24] Berger SL.The complex language of chromatin regulation during transcription[J].Nature,2007,447(7143):407-412.DOI:10.1038/nature05915.
[25] Yan N,Zhou JZ,Zhang JA,et al.Histone hypoacetylation and increased histone deacetylases in peripheral blood mononuclear cells from patients with Graves' disease[J].Mol Cell Endocrinol,2015,414:143-147.DOI:10.1016/j.mce.2015.05.037.
[26] Wang Z,Zang C,Cui K,et al.Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes[J].Cell,2009,138(5):1019-1031.DOI:10.1016/j.cell.2009.06.049.
[27] Cao H,Li L,Yang D,et al.Recent progress in histone methyltransferase(G9a)inhibitors as anticancer agents[J].Eur J Med Chem,2019,179:537-546.DOI:10.1016/j.ejmech.2019.06.072.
[28] Stefan M,Jacobson EM,Huber AK,et al.Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism[J].J Biol Chem,2011,286(36):31168-31179.DOI:10.1074/jbc.M111.247510.
[29] Mattick JS.Non-coding RNAs: the architects of eukaryotic complexity[J].EMBO Rep,2001,2(11):986-991.DOI:10.1093/embo-reports/kve230.
[30] Dorris ER,Smyth P,O'Leary JJ,et al.MIR141 expression differentiates Hashimoto thyroiditis from PTC and benign thyrocytes in irish archival thyroid tissues[J].Front Endocrinol(Lausanne),2012,3:102. DOI:10.3389/fendo.2012.00102.
[31] Qin Q,Wang X,Yan N,et al.Aberrant expression of miRNA and mRNAs in lesioned tissues of Graves' disease[J].Cell Physiol Biochem,2015,35(5):1934-1942.DOI:10.1159/000374002.
[32] Qi Y,Zhou Y,Chen X,et al.MicroRNA-4443 causes CD4+ T cells dysfunction by targeting TNFR-associated factor 4 in Graves' disease[J].Front Immunol,2017,8:1440.DOI:10.3389/fimmu.2017.01440.
[33] Liu R,Ma X,Xu L,et al.Differential microRNA expression in peripheral blood mononuclear cells from Graves' disease patients[J].J Clin Endocrinol Metab,2012,97(6):E968-E972. DOI:10.1210/jc.2011-2982.
[34] Yamada H,Itoh M,Hiratsuka I,et al.Circulating microRNAs in autoimmune thyroid diseases[J].Clin Endocrinol(Oxf),2014,81(2):276-281.DOI:10.1111/cen.12432.
[35] Bernecker C,Halim F,Lenz L,et al.microRNA expressions in CD4+ and CD8+ T-cell subsets in autoimmune thyroid diseases[J].Exp Clin Endocrinol Diabetes,2014,122(2):107-112.DOI:10.1055/s-0033-1361088.
[36] Martínez-Hernández R,Sampedro-Núñez M,Serrano-Somavilla A,et al.A microRNA signature for evaluation of risk and severity of autoimmune thyroid diseases[J].J Clin Endocrinol Metab,2018,103(3):1139-1150.DOI:10.1210/jc.2017-02318.
[37] Li K,Du Y,Jiang BL,et al.Increased microRNA-155 and decreased microRNA-146a may promote ocular inflammation and proliferation in Graves' ophthalmopathy[J].Med Sci Monit,2014,20:639-643.DOI:10.12659/MSM.890686.
[38] Wei H,Guan M,Qin Y,et al.Circulating levels of miR-146a and IL-17 are significantly correlated with the clinical activity of Graves' ophthalmopathy[J].Endocr J,2014,61(11):1087-1092.DOI:10.1507/endocrj.ej14-0246.
[39] Peng H,Liu Y,Tian J,et al.Decreased expression of microRNA-125a-3p upregulates interleukin-23 receptor in patients with Hashimoto's thyroiditis[J].Immunol Res,2015,62(2):129-136.DOI:10.1007/s12026-015-8643-3.
[40] Chen J,Tian J,Tang X,et al.MiR-346 regulates CD4+CXCR5+ T cells in the pathogenesis of Graves' disease[J].Endocrine,2015,49(3):752-760.DOI:10.1007/s12020-015-0546-5.
[41] Kagawa T,Watanabe M,Inoue N,et al.Increases of microRNA let-7e in peripheral blood mononuclear cells in Hashimoto's disease[J].Endocr J,2016,63(4):375-380.DOI:10.1507/endocrj.EJ15-0577.
[42] Inoue Y,Watanabe M,Inoue N,et al.Associations of single nucleotide polymorphisms in precursor-microRNA(miR)-125a and the expression of mature miR-125a with the development and prognosis of autoimmune thyroid diseases[J].Clin Exp Immunol,2014,178(2):229-235.DOI:10.1111/cei.12410.
[43] Zhu J,Zhang Y,Zhang W,et al.MicroRNA-142-5p contributes to Hashimoto's thyroiditis by targeting CLDN1[J].J Transl Med,2016,14(1):166.DOI:10.1186/s12967-016-0917-6.
[44] Perkel JM. Visiting "noncodarnia"[J].Biotechniques,2013,54(6):301, 303-304. DOI:10.2144/000114037.
[45] Rinn JL,Kertesz M,Wang JK,et al.Functional demarcation of active and silent chromatin domains in human HOX loci by noncodingRNAs[J].Cell,2007,129(7):1311-1323.DOI:10.1016/j.cell.2007.05.022.
[46] Wellcome Trust Case Control Consortium.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls[J].Nature,2007,447(7145):661-678.DOI:10.1038/nature05911.
[47] Matsui M,Corey DR.Non-coding RNAs as drug targets[J].Nat Rev Drug Discov,2017,16(3):167-179.DOI:10.1038/nrd.2016.117.
[48] Shirasawa S,Harada H,Furugaki K,et al.SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT,determine susceptibility to autoimmune thyroid disease[J].Hum Mol Genet,2004,13(19):2221-2231.DOI:10.1093/hmg/ddh245.
[49] Zhao SX,Xue LQ,Liu W,et al.Robust evidence for five new Graves' disease risk loci from a staged genome-wide associationanalysis[J].Hum Mol Genet,2013,22(16):3347-3362.DOI:10.1093/hmg/ddt183.
[50] Peng H,Liu Y,Tian J,et al. The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto's thyroiditis[J].Sci Rep,2015,5:17702.DOI: 10.1038/srep17702.

相似文献/References:

[1]朱丹,陈国芳,刘超,等.糖尿病患者合并甲状腺功能异常的机制 及其影响[J].国际内分泌代谢杂志,2016,36(03):206.[doi:10.3760/cma.j.issn.1673-4157.2016.03.16]
 Zhu Dan*,Chen Guofang,Liu Chao,et al.Mechanisms of diabetes combined with thyroid dysfunction and its influence[J].International Journal of Endocrinology and Metabolism,2016,36(03):206.[doi:10.3760/cma.j.issn.1673-4157.2016.03.16]
[2]房方,卫红艳,王坤玲,等.硒治疗自身免疫性甲状腺疾病的荟萃分析[J].国际内分泌代谢杂志,2016,36(04):247.[doi:10.3760/cma.j.issn.1673-4157.2016.04.09]
 Fang Fang,Wei Hongyan,Wang Kunling,et al.A meta-analysis of selenium in the treatment of autoimmune thyroid diseases[J].International Journal of Endocrinology and Metabolism,2016,36(03):247.[doi:10.3760/cma.j.issn.1673-4157.2016.04.09]
[3]郑慧娟,魏璠,魏军平.自噬与自身免疫性甲状腺疾病[J].国际内分泌代谢杂志,2017,37(01):17.[doi:10.3760/cma.j.issn.1673-4157.2017.01.05]
 Zheng Huijuan,Wei Fan,Wei Junping..Autophagy and autoimmune thyroid disease[J].International Journal of Endocrinology and Metabolism,2017,37(03):17.[doi:10.3760/cma.j.issn.1673-4157.2017.01.05]
[4]司马盼盼 孙良阁.多囊卵巢综合征与自身免疫性甲状腺疾病的相关性[J].国际内分泌代谢杂志,2018,38(03):163.[doi:10.3760/cma.j.issn.1673-4157.2018.03.005]
 Sima Panpan,Sun Liangge..Correlation between polycystic ovary syndrome and autoimmune thyroid disease[J].International Journal of Endocrinology and Metabolism,2018,38(03):163.[doi:10.3760/cma.j.issn.1673-4157.2018.03.005]
[5]相萍萍 刘超.滤泡辅助性T细胞、滤泡调节性T细胞与自身免疫性 甲状腺疾病[J].国际内分泌代谢杂志,2019,39(03):168.[doi:10.3760/cma.j.issn.1673-4157.2019.03.006]
 Xiang Pingping,Liu Chao.T foliicular helper cells, T follicular regulatory cells and autoimmune thyroid disease[J].International Journal of Endocrinology and Metabolism,2019,39(03):168.[doi:10.3760/cma.j.issn.1673-4157.2019.03.006]
[6]梁杏燕,赵捷,马红霞.自身免疫性甲状腺疾病对多囊卵巢综合征不良妊娠结局的影响[J].国际内分泌代谢杂志,2022,42(06):481.[doi:10.3760/cma.j.cn121383-20211016-10036]
 Liang Xingyan,Zhao Jie,Ma Hongxia..Influence of autoimmune thyroid disease on adverse pregnant outcome in polycystic ovary syndrome[J].International Journal of Endocrinology and Metabolism,2022,42(03):481.[doi:10.3760/cma.j.cn121383-20211016-10036]

备注/Memo

备注/Memo:
通信作者:尚文斌,Email:wbshang@njucm.edu.cn
基金项目:国家自然科学基金(81873060)
Corresponding author: Shang Wenbin, Email:wbshang@njucm.edu.cn
Fund program:National Natural Science Foundation of China(81873060)
更新日期/Last Update: 2020-05-20