[1]许瀚元 朱惠娟 龚凤英.成纤维细胞生长因子1与糖脂代谢[J].国际内分泌代谢杂志,2019,39(03):190-193.[doi:10.3760/cma.j.issn.1673-4157.2019.03.011]
 Xu Hanyuan,Zhu Huijuan,Gong Fengying.Fibroblast growth factor 1 and glucolipid metabolism[J].International Journal of Endocrinology and Metabolism,2019,39(03):190-193.[doi:10.3760/cma.j.issn.1673-4157.2019.03.011]
点击复制

成纤维细胞生长因子1与糖脂代谢()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
39
期数:
2019年03期
页码:
190-193
栏目:
综述
出版日期:
2019-05-20

文章信息/Info

Title:
Fibroblast growth factor 1 and glucolipid metabolism
作者:
许瀚元 朱惠娟 龚凤英
中国医学科学院,北京协和医学院,北京协和医院内分泌科,卫生健康委内分泌重点实验室,协和转化医学中心 100730
Author(s):
Xu Hanyuan Zhu Huijuan Gong Fengying
Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
关键词:
成纤维细胞生长因子1 脂肪组织 糖代谢 脂代谢
Keywords:
Fibroblast growth factor 1 Adipose tissue Glucose metabolism Lipid metabolism
DOI:
10.3760/cma.j.issn.1673-4157.2019.03.011
摘要:
成纤维细胞生长因子1(FGF1)是成纤维细胞生长因子(FGFs)家族的一员,能够通过自分泌或旁分泌方式促进血管生发、促进细胞增殖分裂,与肿瘤发生及器官发育不良等疾病密切相关。近期研究发现,FGF1还具有内分泌作用。一方面,外周注射FGF1能够通过血液循环作用于外周组织,增加其胰岛素敏感性,改善糖代谢异常; 另一方面,中枢脑室内注射FGF1还能够通过抑制垂体促肾上腺皮质激素(ACTH)的分泌,从而使皮质醇分泌减少,促进糖酵解,抑制糖异生,使血糖水平显著降低。另外,FGF1还能够在过氧化物酶体增殖物活化受体(PPAR)γ的调节下,参与脂肪组织重塑,并调控脂肪分解,参与脂代谢的调节进程。因此,FGF1作为一种代谢调节因子,在糖、脂代谢调节中发挥着重要作用,有望在未来成为治疗2型糖尿病的新靶点。
Abstract:
Fibroblast growth factor 1(FGF1), as a member of the fibroblast growth factor family, is reported to be able to promote angiogenesis, cell division and proliferation in intracrine and paracrine manner, therefore closely connecting to the pathogenesis of cancer and congenital organ dysplasia. Recent researches revealed that FGF1 has endocrine functions as well. On the one hand, studies showed that peripheral injection of FGF1 could improve insulin sensibility in multiple tissues, thus resulting in overall improvement of glucose metabolism through blood circulation. On the other hand,intracerebroventricular injection of FGF1 inhibited the secretion of adrenocorticotropic hormone and decreased corticosterone secretion, subsequently promoting glycolysis as well as suppressing gluconeogenesis, resulting in reduced blood glucose. In addition, FGF1 was also reported to play a role in lipid metabolism through monitoring adipose tissue remodeling and lipolysis under the regulation of peroxisome proliferator-activated receptor γ(PPARγ). In conclusion, acting as a metabolic regulator, FGF1 plays an important role in modulating glucose and lipid metabolism. Therefore, it might be a promising pharmaceutical target in the treatment of type 2 diabetes.

参考文献/References:

[1] Itoh N,Nakayama Y,Konishi M.Roles of FGFs as paracrine or endocrine signals in liver development, health, and disease[J].Front Cell Dev Biol,2016,4:30.DOI:10.3389/fcell.2016.00030.
[2] Imamura T. Physiological functions and underlying mechanisms of fibroblast growth factor(FGF)family members: recent findings and implications for their pharmacological application[J].Biol Pharm Bull,2014,37(7):1081-1089.
[3] Jonker JW,Suh JM,Atkins AR,et al.A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis[J].Nature,2012,485(7398):391-394. DOI:10.1038/nature10998.
[4] Scarlett JM,Rojas JM,Matsen ME,et al.Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents[J].Nat Med,2016,22(7):800-806.DOI:10.1038/nm.4101.
[5] Sun K,Scherer PE.The PPARγ-FGF1 axis: an unexpected mediator of adipose tissue homeostasis[J].Cell Res,2012,22(10):1416-1418.DOI:10.1038/cr.2012.94.
[6] Wang S,Yang Q,Yu S,et al.Fibroblast growth factor 1 levels are elevated in newly diagnosed type 2 diabetes compared to normal glucose tolerance controls[J].Endocr J,2016,63(4):359-365.DOI:10.1507/endocrj.EJ15-0627.
[7] Zhu J,Wang Y,Zhu K,et al.Serum fibroblast growth factor 1 is associated with the decreased risk of obesityin human[J].Exp Clin Endocrinol Diabetes,2017,125(5):322-326. DOI:10.1055/s-0043-104532.
[8] Wang A,Yan X,Zhang C,et al.Characterization of fibroblast growth factor 1 in obese children and adolescents[J].Endocr Connect,2018,7(8):932-940.DOI:10.1530/EC-18-0141.
[9] Jaye M,Howk R,Burgess W,et al.Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization[J].Science,1986,233(4763):541-545.
[10] Eriksson AE,Cousens LS,Weaver LH,et al.Three-dimensional structure of human basic fibroblast growth factor[J].Proc Natl Acad Sci U S A,1991,88(8):3441-3445.
[11] Beenken A,Mohammadi M.The FGF family: biology, pathophysiology and therapy[J].Nat Rev Drug Discov,2009,8(3):235-253.DOI:10.1038/nrd2792.
[12] Suh JM,Jonker JW,Ahmadian M,et al.Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer[J]. Nature,2014,513(7518):436-439.DOI:10.1038/nature13540.
[13] Suzuki S,Li AJ,Ishisaki A,et al.Feeding suppression by fibroblast growth factor-1 is accompanied by selective induction of heat shock protein 27 in hypothalamic astrocytes[J].Eur J Neurosci,2001,13(12):2299-2308.
[14] Perry RJ,Lee S,Ma L,et al.FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis[J].Nat Commun,2015,6:6980.DOI:10.1038/ncomms7980.
[15] Perry RJ,Zhang XM,Zhang D,et al.Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis[J].Nat Med,2014,20(7):759-763.DOI:10.1038/nm.3579.
[16] Scarlett JM,Schwartz MW.Gut-brain mechanisms controlling glucose homeostasis[J].F1000Prime Rep,2015,7:12.DOI:10.12703/P7-12.
[17] Steinbusch L,Labouèbe G,Thorens B.Brain glucose sensing in homeostatic and hedonic regulation[J].Trends Endocrinol Metab,2015,26(9):455-466.DOI:10.1016/j.tem.2015.06.005.
[18] Gasser E,Moutos CP,Downes M,et al.FGF1-a new weapon to control type 2 diabetes mellitus[J].Nat Rev Endocrinol,2017,13(10):599-609.DOI:10.1038/nrendo.2017.78.
[19] Tontonoz P,Spiegelman BM.Fat and beyond: the diverse biology of PPARgamma[J].Annu Rev Biochem,2008,77:289-312.DOI:10.1146/annurev.biochem.77.061307.091829.
[20] Lee YH,Mottillo EP,Granneman JG.Adipose tissue plasticity from WAT to BAT and in between[J].Biochim Biophys Acta,2014,1842(3):358-369.DOI:10.1016/j.bbadis.2013.05.011.
[21] Choe SS,Huh JY,Hwang IJ,et al.Adipose tissue remodeling:its role in energy metabolism and metabolic disorders[J].Front Endocrinol(Lausanne),2016,7:30.DOI:10.3389/fendo.2016.00030.
[22] Sun K,Kusminski CM,Scherer PE.Adipose tissue remodeling and obesity[J]. J Clin Invest,2011,121(6):2094-2101.DOI:10.1172/JCI45887.

相似文献/References:

[1]赵紫琴,雒瑢,田凤石,等.替米沙坦对OLETF大鼠皮下和内脏脂肪组织PPARγ表达的影响[J].国际内分泌代谢杂志,2014,(06):365.[doi:10.3760/cma.j.issn.1673-4157.2014.06.002]
 Zhao Ziqin*,Luo Rong,Tian Fengshi,et al.Effects of telmisartan on expression of PPARγ in subcutaneous and visceral adipose tissue in OLETF rats[J].International Journal of Endocrinology and Metabolism,2014,(03):365.[doi:10.3760/cma.j.issn.1673-4157.2014.06.002]
[2]杨曦,刘玉洁,马慧娟.C1q/肿瘤坏死因子相关蛋白12与糖代谢[J].国际内分泌代谢杂志,2016,36(03):195.[doi:10.3760/cma.j.issn.1673-4157.2016.03.13]
 Yang Xi*,Liu Yujie,Ma Huijuan..C1q/tumor necrosis factor-related protein 12 and glucose metabolism[J].International Journal of Endocrinology and Metabolism,2016,36(03):195.[doi:10.3760/cma.j.issn.1673-4157.2016.03.13]
[3]徐传翀,尚文斌.脂肪固有免疫细胞与胰岛素抵抗[J].国际内分泌代谢杂志,2016,36(04):257.[doi:10.3760/cma.j.issn.1673-4157.2016.04.11]
 Xu Chuanchong,Shang Wenbin.Innate immune cells in adipose tissue and insulin resistance[J].International Journal of Endocrinology and Metabolism,2016,36(03):257.[doi:10.3760/cma.j.issn.1673-4157.2016.04.11]
[4]田清武,孙树凯,翟玉娥,等.雌激素对去卵巢大鼠内脏脂肪细胞脂肪因子表达水平的影响[J].国际内分泌代谢杂志,2016,36(06):374.[doi:10.3760/cma.j.issn.1673-4157.2016.06.04]
 Tian Qingwu*,Sun Shukai,Zhai Yue,et al.Effects of estrogen on the expression of adipokines in visceral fat cells in ovariectomized rats[J].International Journal of Endocrinology and Metabolism,2016,36(03):374.[doi:10.3760/cma.j.issn.1673-4157.2016.06.04]
[5]龚凡,陆灏.IKKε调节代谢平衡及其机制[J].国际内分泌代谢杂志,2017,37(02):120.[doi:10.3760/cma.j.issn.1673-4157.2017.02.013]
 Gong Fan,Lu Hao..IKKε regulate energy balance and its mechanism[J].International Journal of Endocrinology and Metabolism,2017,37(03):120.[doi:10.3760/cma.j.issn.1673-4157.2017.02.013]
[6]王艳立,张林,胡茂清.长链非编码RNAs与脂肪组织的关系[J].国际内分泌代谢杂志,2017,37(02):131.[doi:10.3760/cma.j.issn.1673-4157.2017.02.016]
 Wang Yanli*,Zhang Lin,Hu Maoqing..Relationship between long noncoding RNAs and adipose tissue[J].International Journal of Endocrinology and Metabolism,2017,37(03):131.[doi:10.3760/cma.j.issn.1673-4157.2017.02.016]
[7]高晶扬,张曼娜,曲伸.microRNA与脂肪组织慢性低度炎性反应[J].国际内分泌代谢杂志,2017,37(02):135.[doi:10.3760/cma.j.issn.1673-4157.2017.02.017]
 Gao Jingyang,Zhang Manna,Qu Shen..microRNA and chronic low-grade inflammation of adipose tissue[J].International Journal of Endocrinology and Metabolism,2017,37(03):135.[doi:10.3760/cma.j.issn.1673-4157.2017.02.017]
[8]许瀚元 朱惠娟 龚凤英.恒定自然杀伤细胞与肥胖[J].国际内分泌代谢杂志,2019,39(01):40.[doi:10.3760/cma.j.issn.1673-4157.2019.01.010]
 Xu Hanyuan,Zhu Huijuan,Gong Fengying.Invariant natural killer T cells and obesity[J].International Journal of Endocrinology and Metabolism,2019,39(03):40.[doi:10.3760/cma.j.issn.1673-4157.2019.01.010]
[9]杨佳苗 沈山梅.水通道蛋白7与脂肪组织代谢的关系[J].国际内分泌代谢杂志,2019,39(04):253.[doi:10.3760/cma.j.issn.1673-4157.2019.04.009]
 Yang Jiamiao,Shen Shanmei.Association between aquaporin 7 and adipose metabolism[J].International Journal of Endocrinology and Metabolism,2019,39(03):253.[doi:10.3760/cma.j.issn.1673-4157.2019.04.009]
[10]刘雨平,罗佐杰.促甲状腺激素受体在非甲状腺组织中的表达及意义[J].国际内分泌代谢杂志,2021,41(01):10.[doi:10.3760/cma.j.cn121383-20200509-05015]
 Liu Yuping,Luo Zuojie..Expression and significance of thyroid stimulating hormone receptor in extrathyroidal tissues[J].International Journal of Endocrinology and Metabolism,2021,41(03):10.[doi:10.3760/cma.j.cn121383-20200509-05015]

备注/Memo

备注/Memo:
通信作者:龚凤英,Email:fygong@sina.com
基金项目:国家自然科学基金(30540036,30771026,81370898); 北京市自然科学基金(7082079,7182130); 人社部留学人员科技活动项目择优资助经费(启动类); 国家临床重点专科建设项目单位(WBYZ2011-873); 协和中青年基金项目(2013-020)
Corresponding author: Gong Fengying,Email:fygong@sina.com
Fund program:National Natural Science Foundation of China(30540036,30771026,81370898); Natural Science Foundation of Beijing(7082079, 7182130); Scientific Research Foundation for the Selected Returned Overseas Chinese Scholars, The Ministry of Human Resources and Social Security of China; The Program of National Key Clinical Specialty Construction(WBYZ2011-873); PUMCH Foundation(2013-020)
更新日期/Last Update: 2019-05-20