[1]严琴慧 李晓南.线粒体自噬与白色脂肪棕色化的关系[J].国际内分泌代谢杂志,2019,39(02):87-90.[doi:10.3760/cma.j.issn.1673-4157.2019.02.004]
 Yan Qinhui,Li Xiaonan.Relationship between mitophagy and browning of white adipose[J].International Journal of Endocrinology and Metabolism,2019,39(02):87-90.[doi:10.3760/cma.j.issn.1673-4157.2019.02.004]
点击复制

线粒体自噬与白色脂肪棕色化的关系()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
39
期数:
2019年02期
页码:
87-90
栏目:
综述
出版日期:
2019-03-20

文章信息/Info

Title:
Relationship between mitophagy and browning of white adipose
作者:
严琴慧 李晓南
南京医科大学附属儿童医院儿童保健科 210008
Author(s):
Yan Qinhui Li Xiaonan
Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
关键词:
线粒体自噬 白色脂肪棕色化 肥胖
Keywords:
Mitophagy Browning of white adipose Obesity
DOI:
10.3760/cma.j.issn.1673-4157.2019.02.004
摘要:
已知肥胖与多种疾病相关,白色脂肪棕色化作为可能治疗肥胖的新靶点受到了广泛的关注。在白色脂肪棕色化过程中,线粒体的数量和功能会发生明显的变化,而线粒体自噬是调控线粒体数量和控制线粒体质量的重要方式。目前有研究证实,抑制线粒体自噬可阻断脂肪干细胞向白色脂肪细胞分化和促进成熟白色脂肪细胞向米色脂肪细胞转化,但线粒体自噬和白色脂肪棕色化的关系尚不确定,还需进一步探索。
Abstract:
As we all known, obesity is associated with many diseases. Browning of white adipose, as a new way for the treatment of obesity, has received the widespread attention. During the process of white-to-brown, the numbers and function of mitochondria have been significantly changed. Mitophagy is an important way, which changes the number of mitochondria and controls the quality of mitochondria. Recently, some studies have revealed that the inhibition of mitophagy could prevent adipose-derived stem cells from differentiating into white adipocyte and promote the transformation of mature white adipocyte into beige adipocyte. However, the relationship between mitophagy and browning process is still unclear, which needs further study.

参考文献/References:

[1] NCD Risk Factor Collaboration(NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults[J]. Lancet,2017,390(10113):2627-2642. DOI:10.1016/S0140-6736(17)32129-3.
[2] Seidell JC,Halberstadt J.The global burden of obesity and the challenges of prevention[J].Ann Nutr Metab,2015,66(Suppl 2):7-12.DOI:10.1159/000375143.
[3] Inagaki T,Sakai J,Kajimura S.Transcriptional and epigenetic control of brown and beige adipose cell fate and function[J].Nat Rev Mol Cell Biol,2016,17(8):480-495. DOI:10.1038/nrm.2016.62.
[4] Cypess AM,Lehman S,Williams G,et al.Identification and importance of brown adipose tissue in adult humans[J].N Engl J Med,2009,360(15):1509-1517.DOI:10.1056/NEJMoa0810780.
[5] Bartelt A,Heeren J.Adipose tissue browning and metabolic health[J].Nat Rev Endocrinol,2014,10(1):24-36.DOI:10.1038/nrendo.2013.204.
[6] Roy M,Reddy PH,Iijima M,et al.Mitochondrial division and fusion in metabolism[J].Curr Opin Cell Biol,2015,33:111-118.DOI:10.1016/j.ceb.2015.02.001.
[7] Scherz-Shouval R,Elazar Z.Regulation of autophagy by ROS:physiology and pathology[J].Trends Biochem Sci,2011,36(1):30-38.DOI:10.1016/j.tibs.2010.07.007.
[8] Boudina S,Graham TE.Mitochondrial function/dysfunction in white adipose tissue[J].Exp Physiol,2014,99(9):1168-1178.DOI:10.1113/expphysiol.2014.081414.
[9] 陈冉,李晓南.棕色脂肪组织分化及调控的研究进展[J].生理科学进展,2016, 47(1):38-42.
[10] Cedikova M,Kripnerová M,Dvorakova J,et al.Mitochondria in white, brown, and beige adipocytes[J].Stem Cells Int,2016,2016:6067349.DOI:10.1155/2016/6067349.
[11] Palikaras K,Tavernarakis N.Mitochondrial homeostasis:the interplay between mitophagy and mitochondrial biogenesis[J].Exp Gerontol,2014,56:182-188.DOI:10.1016/j.exger.2014.01.021.
[12] Chung N,Park J,Lim K.The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue[J].J Exerc Nutrition Biochem,2017,21(2):39-47.DOI:10.20463/jenb.2017.0020.
[13] Huang C,Chen D,Xie Q,et al.Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes[J].Biochem Biophys Res Commun,2013,438(1):211-217.DOI:10.1016/j.bbrc.2013.07.055.
[14] Parzych KR,Klionsky DJ.An overview of autophagy:morphology, mechanism,and regulation[J].Antioxid Redox Signal,2014,20(3):460-473.DOI:10.1089/ars.2013.5371.
[15] Zhang Y,Zeng X,Jin S.Autophagy in adipose tissue biology[J].Pharmacol Res,2012,66(6):505-512.DOI:10.1016/j.phrs.2012.09.004.
[16] Redmann M,Dodson M,Boyer-Guittaut M,et al.Mitophagy mechanisms and role in human diseases[J].Int J Biochem Cell Biol,2014,53:127-133.DOI:10.1016/j.biocel.2014.05.010.
[17] Altshuler-Keylin S,Kajimura S.Mitochondrial homeostasis in adipose tissue remodeling[J].Sci Signal,2017,10(468):pii:eaai9248.DOI:10.1126/scisignal.aai9248.
[18] Yoshii SR,Mizushima N.Monitoring and measuring autophagy[J].Int J Mol Sci,2017,18(9):pii:E1865.DOI:10.3390/ijms18091865.
[19] Liu L,Sakakibara K,Chen Q,et al.Receptor-mediated mitophagy in yeast and mammalian systems[J].Cell Res,2014,24(7):787-795.DOI:10.1038/cr.2014.75.
[20] Murakawa T,Yamaguchi O,Hashimoto A,et al.Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation[J].Nat Commun,2015,6:7527.DOI:10.1038/ncomms8527.
[21] Koyano F,Okatsu K,Kosako H,et al.Ubiquitin is phosphorylated by PINK1 to activate parkin[J].Nature,2014,510(7503):162-166.DOI:10.1038/nature13392.
[22] Jo SJ,Choi WW,Lee ES,et al.Temporary increase of PPAR-γ and transient expression of UCP-1 in stromal vascular fraction isolated human adipocyte derived stem cells during adipogenesis[J].Lipids,2011,46(6):487-494.DOI:10.1007/s11745-011-3525-5.
[23] Goldman SJ,Zhang Y,Jin S.Autophagic degradation of mitochondria in white adipose tissue differentiation[J].Antioxid Redox Signal,2011,14(10):1971-1978.DOI:10.1089/ars.2010.3777.
[24] Shiau MY,Lee PS,Huang YJ,et al.Role of PARL-PINK1-Parkin pathway in adipocyte differentiation[J].Metabolism,2017,72:1-17.DOI:10.1016/j.metabol.2017.03.010.
[25] Taylor D, Gottlieb RA. Parkin-mediated mitophagy is downregulated in browning of white adipose tissue[J].Obesity(Silver Spring),2017,25(4):704-712. DOI:10.1002/oby.21786.
[26] Tol MJ,Ottenhoff R,van Eijk M,et al.A PPARγ-Bnip3 axis couples adipose mitochondrial fusion-fission balance to systemic insulin sensitivity[J].Diabetes,2016,65(9):2591-2605.DOI:10.2337/db16-0243.
[27] Choi JW,Jo A,Kim M,et al.BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice[J].Diabetologia,2016,59(3):571-581.doi: 10.1007/s00125-015-3836-9.
[28] Fu W,Liu Y,Sun C,et al.Transient p53 inhibition sensitizes aged white adipose tissue for beige adipocyte recruitment by blocking mitophagy[J].FASEB J,2019,33(1):844-856.DOI:10.1096/fj.201800577R.
[29] Altshuler-Keylin S,Shinoda K,Hasegawa Y,et al.Beige adipocyte maintenance is regulated by autophagy induced mitochondrial clearance[J].Cell Metab,2016,24(3):402-419.DOI:10.1016/j.cmet.2016.08.002.
[30] Lu X,Altshuler-Keylin S,Wang Q,et al.Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism[J].Sci Signal,2018,11(527):pii:eaap8526.DOI:10.1126/scisignal.aap8526.
[31] Akabane S,Uno M,Tani N,et al.PKA regulates PINK1 stability and parkin recruitment to damaged mitochondria through phosphorylation of MIC60[J].Mol Cell,2016,62(3):371-384.DOI:10.1016/j.molcel.2016.03.037.
[32] Lu Y,Fujioka H,Joshi D,et al.Mitophagy is required for brown adipose tissue mitochondrial homeostasis during cold challenge[J].Sci Rep,2018,8(1):8251. DOI:10.1038/s41598-018-26394-5.
[33] Chen X,Yi L,Song S,et al.Puerarin attenuates palmitate-induced mitochondrial dysfunction, impaired mitophagy and inflammation in L6 myotubes[J].Life Sci,2018,206:84-92.DOI:10.1016/j.lfs.2018.05.041.
[34] Sinha RA,Yen PM.Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD[J].Cell Biosci,2016,6:46.DOI:10.1186/s13578-016-0113-7.
[35] 崔迪,邱守涛,王海燕,等.耐力运动对营养性肥胖小鼠骨骼肌细胞自噬及线粒体自噬的影响[J].体育科学,2014,34(12):63-71.DOI:10.3969/j.issn.1000-677X.2014.12.008.

相似文献/References:

[1]吕丹,陈树春,李晓思.白色脂肪棕色化及其调控因素[J].国际内分泌代谢杂志,2014,(05):321.[doi:10.3760/cma.j.issn.1673-4157.2014.05.009]
 Lyu Dan*,Chen Shuchun,Li Xiaosi..Browning of white adipose tissue and its regulating factors[J].International Journal of Endocrinology and Metabolism,2014,(02):321.[doi:10.3760/cma.j.issn.1673-4157.2014.05.009]
[2]柯孟婷,孙家忠,李扬.3,5-二碘-L-甲状腺素对白色脂肪棕色化的作用[J].国际内分泌代谢杂志,2016,36(06):370.[doi:10.3760/cma.j.issn.1673-4157.2016.06.03]
 Ke Mengting*,Sun Jiazhong,Li Yang..Effects of 3,5-diiodo-L-thyronine on browning of white adipose tissue[J].International Journal of Endocrinology and Metabolism,2016,36(02):370.[doi:10.3760/cma.j.issn.1673-4157.2016.06.03]
[3]陈妹妹,梁瑜祯,李争明,等.利拉鲁肽对白色脂肪的作用[J].国际内分泌代谢杂志,2020,40(05):331.[doi:10.3760/cma.j.cn121383-20191206-12014]
 Chen Meimei,Liang Yuzhen,Li Zhengming,et al.Effect of liraglutide on white fat[J].International Journal of Endocrinology and Metabolism,2020,40(02):331.[doi:10.3760/cma.j.cn121383-20191206-12014]

备注/Memo

备注/Memo:
通信作者:李晓南,Email:xnli@njmu.edu.cn
基金项目:国家自然科学基金(81773421)
Corresponding author: Li Xiaonan, Email:xnli@njmu.edu.cn
Fund program:National Natural Science Foundation of China(81773421)
更新日期/Last Update: 2019-03-20