参考文献/References:
[1] Misra A, Singhal N, Khurana L. Obesity, the metabolic syndrome, and type 2 diabetes in developing countries: role of dietary fats and oils[J].J Am Coll Nutr,2010,29(3 Suppl):289S-301S.
[2] Cummings JH, Pomare EW, Branch WJ,et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J].Gut,1987,28(10):1221-1227.
[3] Nilsson U, Nyman M. Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility[J].Br J Nutr,2005,94(5):705-713.
[4] Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health[J].J AOAC Int,2012,95(1):50-60.
[5] Lin HV, Frassetto A, Kowalik EJ Jr,et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J].PLoS One,2012,7(4):e35240. DOI:10.1371/journal.pone.0035240.
[6] Le Poul E, Loison C, Struyf S,et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J].J Biol Chem,2003,278(28):25481-25489. DOI:10.1074/jbc.M301403200.
[7] Blaut M. Ecology and physiology of the intestinal tract[J].Curr Top Microbiol Immunol,2013,358,247-272. DOI:10.1007/82_2011_192.
[8] Eckburg PB, Bik EM, Bernstein CN,et al. Diversity of the human intestinal microbial flora[J].Science,2005,308(5728):1635-1638. DOI:10.1126/science.1110591.
[9] Yang J, Martínez I, Walter J,et al. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production[J].Anaerobe,2013,23:74-81. DOI:10.1016/j.anaerobe.2013.06.012.
[10] Jakobsdottir G, Xu J, Molin G,et al. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects[J].PLoS One,2013,8(11):e80476. DOI: 10.1371/journal.pone.0080476.
[11] Duncan SH, Belenguer A, Holtrop G,et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces[J].Appl Environ Microbiol,2007,73(4):1073-1078. DOI:10.1128/AEM.02340-06.
[12] Fernandes J, Su W, Rahat-Rozenbloom S,et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans[J].Nutr Diabetes,2014,4:e121. DOI: 10.1038/nutd.2014.23.
[13] Turnbaugh PJ, Ley RE, Mahowald MA,et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J].Nature,2006,444(7122):1027-1031. DOI:10.1038/nature05414.
[14] den Besten G, Bleeker A, Gerding A,et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J].Diabetes,2015,64(7):2398-2408. DOI:10.2337/db14-1213.
[15] den Besten G, Havinga R, Bleeker A,et al. The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome[J].PLoS One,2014,9(9):e107392. DOI:10.1371/journal.pone.0107392.
[16] Kimura I, Ozawa K, Inoue D,et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J].Nat Commun,2013,4:1829. DOI:10.1038/ncomms2852.
[17] Beauvieux MC, Roumes H, Robert N,et al. Butyrate ingestion improves hepatic glycogen storage in the re-fed rat[J].BMC Physiol,2008,8:19. DOI:10.1186/1472-6793-8-19.
[18] Robertson MD, Bickerton AS, Dennis AL,et al. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism[J].Am J Clin Nutr,2005,82(3):559-567.
[19] Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome[J].Cell Metab,2009,9(5):407-416. DOI:10.1016/j.cmet.2009.03.012.
[20] Freeland KR, Wolever TM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha[J].Br J Nutr,2010,103(3):460-466. DOI:10.1017/S0007114509991863.
[21] Priyadarshini M, Villa SR, Fuller M,et al. An acetate-specific GPCR, FFAR2, regulates insulin secretion[J].Mol Endocrinol,2015,29(7):1055-1066. DOI:10.1210/me.2015-1007.
[22] Winzell MS, Ahrén B. G-protein-coupled receptors and islet function-implications for treatment of type 2 diabetes[J].Pharmacol Ther,2007,116(3):437-448. DOI:10.1016/j.pharmthera.2007.08.002.
[23] Tang C, Ahmed K, Gille A,et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes[J].Nat Med,2015,21(2):173-177. DOI:10.1038/nm.3779.
[24] McNelis JC, Lee YS, Mayoral R,et al. GPR43 potentiates β-cell function in obesity[J].Diabetes,2015,64(9):3203-3217. DOI:10.2337/db14-1938.
[25] Tolhurst G, Heffron H, Lam YS,et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J].Diabetes,2012,61(2):364-371. DOI:10.2337/db11-1019.
[26] Psichas A, Sleeth ML, Murphy KG,et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents[J].Int J Obes(Lond),2015,39(3):424-429. DOI:10.1038/ijo.2014.153.
[27] Cani PD, Lecourt E, Dewulf EM,et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal[J].Am J Clin Nutr,2009,90(5):1236-1243. DOI:10.3945/ajcn.2009.28095.
[28] Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults[J].Am J Clin Nutr,2009,89(6):1751-1759. DOI:10.3945/ajcn.2009.27465.
[29] Li Y, Kokrashvili Z, Mosinger B,et al. Gustducin couples fatty acid receptors to GLP-1 release in colon[J].Am J Physiol Endocrinol Metab,2013,304(6):E651-E660. DOI:10.1152/ajpendo.00471.2012.
相似文献/References:
[1]姚霜霜,张翼飞,张志国,等.小檗碱改善代谢性疾病的肠道相关机制[J].国际内分泌代谢杂志,2014,(06):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
Yao Shuangshuang,Zhang Yifei,Zhang Zhiguo,et al.The gut-related mechanisms of berberine in the treatment of metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(04):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
[2]顾子良 王洪东 朱大龙 毕艳.2型糖尿病治疗方法对肠道菌群的影响[J].国际内分泌代谢杂志,2018,38(04):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
Gu Ziliang,Wang Hongdong,Zhu Dalong,et al.Effects of treatment of type 2 diabetes on gut microbiota[J].International Journal of Endocrinology and Metabolism,2018,38(04):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
[3]陈俊秀 杜宏.肠道菌群与口服降糖药物[J].国际内分泌代谢杂志,2018,38(05):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
Chen Junxiu*,Du Hong.Intestinal microbiota and oral hypoglycemic agents[J].International Journal of Endocrinology and Metabolism,2018,38(04):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
[4]夏心怡 张洪梅.肠道菌群及其代谢产物调节糖脂代谢的机制[J].国际内分泌代谢杂志,2018,38(05):309.[doi:10.3760/cma.j.issn.1673-4157.2018.05.006]
Xia Xinyi,Zhang Hongmei.Regulating mechanism of glycolipid metabolism by intestinal microbiota and its metabolites[J].International Journal of Endocrinology and Metabolism,2018,38(04):309.[doi:10.3760/cma.j.issn.1673-4157.2018.05.006]
[5]周晓聪 张晓黎.益生菌与妊娠糖尿病的相关性[J].国际内分泌代谢杂志,2018,38(05):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
Zhou Xiaocong,Zhang Xiaoli.Relationship between probiotics and gestational diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2018,38(04):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
[6]万仕炜 郁梅 方彭华 张真稳.小檗碱改善胰岛素抵抗的相关机制[J].国际内分泌代谢杂志,2018,38(05):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
Wan Shiwei*,Yu Mei,Fang Penghua,et al.Related mechanism of berberine in improving insulin resistance[J].International Journal of Endocrinology and Metabolism,2018,38(04):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
[7]张晓蕾 敖娜 都健.维生素D以肠道菌群为靶点治疗非酒精性脂肪性肝病的
研究进展[J].国际内分泌代谢杂志,2019,39(05):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
Zhang Xiaolei,Ao Na,Du Jian.Advances in the treatment of non-alcoholic fatty liver disease with vitamin D targeting intestinal flora[J].International Journal of Endocrinology and Metabolism,2019,39(04):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
[8]叶凌霞 洪洁.多囊卵巢综合征与肠道菌群[J].国际内分泌代谢杂志,2019,39(05):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]
Ye Lingxia,Hong Jie.Polycystic ovary syndrome and gut microbiota[J].International Journal of Endocrinology and Metabolism,2019,39(04):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]
[9]陈莹 刘子荣.减重手术改善代谢的新机制[J].国际内分泌代谢杂志,2020,40(04):275.[doi:10.3760/cma.j.issn.1673-4157.2020.04.014]
Chen Ying,Liu Zirong.The novel mechanisms of weight-loss surgery in improving metabolism[J].International Journal of Endocrinology and Metabolism,2020,40(04):275.[doi:10.3760/cma.j.issn.1673-4157.2020.04.014]
[10]詹永颖,黄汉伟.益生菌对妊娠期糖尿病的影响及相关机制[J].国际内分泌代谢杂志,2021,41(02):124.[doi:10.3760/cma.j.cn121383-20200821-08037]
Zhan Yongying,Huang Hanwei..Effects and mechanism of probiotics on gestational diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2021,41(04):124.[doi:10.3760/cma.j.cn121383-20200821-08037]