[1]乐颖,蒋科威,薛萌,等.microRNA-31对高糖条件下人足细胞上皮-间充质转分化的影响[J].国际内分泌代谢杂志,2022,42(05):354-359.[doi:10.3760/cma.j.cn121383-20210426-04077]
 Le Ying,Jiang Kewei,Xue Meng,et al.Effects of microRNA-31 on high-glucose induced epithelial-mesenchymal transition of podocytes[J].International Journal of Endocrinology and Metabolism,2022,42(05):354-359.[doi:10.3760/cma.j.cn121383-20210426-04077]
点击复制

microRNA-31对高糖条件下人足细胞上皮-间充质转分化的影响()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
42
期数:
2022年05期
页码:
354-359
栏目:
论著
出版日期:
2022-09-20

文章信息/Info

Title:
Effects of microRNA-31 on high-glucose induced epithelial-mesenchymal transition of podocytes
作者:
乐颖1蒋科威2薛萌1张秀珍1袁凤易1
1深圳市人民医院、暨南大学第二临床医学院、南方科技大学第一附属医院内分泌科 518020; 2深圳市人民医院、暨南大学第二临床医学院、南方科技大学第一附属医院老年病科 518020
Author(s):
Le Ying1 Jiang Kewei2 Xue Meng1 Zhang Xiuzhen1 Yuan Fengyi1.
1Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China; 2Department of Geriatrics, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
关键词:
miR-31 低氧诱导因子-1抑制剂 糖尿病肾脏病 足细胞 上皮-间充质转分化
Keywords:
miR-31 FIH-1 Diabetic kidney disease Podocyte Epithelial-mesenchymal transition
DOI:
10.3760/cma.j.cn121383-20210426-04077
摘要:
目的 探讨microRNA-31(miR-31)在高糖诱导足细胞上皮-间充质转分化(EMT)中的机制。方法 将体外培养的人肾小球足细胞按不同糖浓度分为低糖组(LG)、高渗组(HM)和高糖组(HG); 按是否转染过表达miR-31(miR-31 mimics)分为miR-31过表达组(miR-31m组)、阴性对照组(miR-NC组)和脂质体组(Mock组); 按照是否转染沉默低氧诱导因子-1抑制剂(FIH-1)及沉默miR-31(miR-31 inhibitor)分为FIH-1沉默组(si-FIH-1组)、miR-31沉默组(miR-31i组)、FIH-1沉默+miR-31沉默组(si-FIH-1+miR-31i组)及阴性对照组(NC组)。采用实时聚合酶链式反应(qRT-PCR)和Western blot检测各组细胞低氧诱导因子-1抑制剂(FIH-1)、转化生长因子-β1(TGF-β1)、α-平滑肌肌动蛋白(α-SMA)的mRNA和蛋白表达水平; 采用双荧光素酶靶标实验验证miR-31与FIH-1基因的靶向关系。结果 与LG和HM组比较,HG组miR-31表达水平显著升高(F=146.8,P<0.01),FIH-1蛋白表达水平明显下降(F=54.23,P<0.01),而TGF-β1及α-SMA蛋白表达水平均显著升高(F=360.6,P<0.01; F=193.7,P<0.01)。双荧光素酶报告基因实验分析结果显示,FIH-1是miR-31的靶基因。si-FIH-1与miR-31i共同转染时,可以恢复si-FIH-1或miR-31i单独转染导致的FIH-1、TGF-β1、α-SMA的mRNA及蛋白表达变化。结论 miR-31靶向调控FIH-1促进足细胞EMT,抑制miR-31的表达可减轻高糖诱导的足细胞EMT。
Abstract:
Objective To investigate the mechanism of microRNA-31(miR-31)in high-glucose induced epithelial-mesenchymal transition(EMT)of podocytes.Methods According to different sugar concentrations, human glomerular podocytes cultured in vitro were divided into low glucose group(LG), hyperosmolar group(HM)and high glucose group(HG); according to whether transfected miR-31 mimics, podocytes were divided into miR-31m group, negative miR-NC group and Mock group; according to whether transfected si-FIH-1 and miR-31i, podocytes were divided into si-FIH-1 group, miR-31i group, si-FIH-1+miR-31i group and NC group. Western blot was used to detect the protein expression levels of FIH-1, TGF-β1, and α-SMA in podocytes of each group; qRT-PCR was used to detect the mRNA expression levels of miR-31, FIH-1, TGF-β1, and α-SMA in podocytes of each group; double luciferase target experiment was used to verify the targeting relationship between miR-31 and FIH-1 gene.Results Compared with the LG and HM group, the expression of miR-31 in the HG group was significantly increased(F=146.8, P<0.01), and the expression of FIH-1 was significantly decreased(F=54.23, P<0.01), and the expression of TGF-β1 and α-SMA were increased significantly(F=360.6,P<0.01; F=193.7, P<0.01). The results of the dual luciferase reporter gene experiment showed that FIH-1 was the target gene of miR-31. When si-FIH-1 and miR-31i were co-transfected, the changes in the mRNA and protein expression of FIH-1, TGF-β1, and α-SMA caused by si-FIH-1 or miR-31i alone were restored.Conclusion miR-31 can promote the EMT of podocytes by targeting FIH-1. Inhibiting miR-31 expression can reduce the EMT induced by high glucose in podocytes.

参考文献/References:

[1] 中华医学会糖尿病学分会微血管并发症学组.中国糖尿病肾脏疾病防治临床指南[J].中华糖尿病杂志,2019,11(1):15-28.DOI:10.3760/cma.j.issn.1674-5809.2019.01.004.
[2] 宋凯云,刘必成,汤日宁.内皮-足细胞对话在糖尿病肾病中的研究进展[J].中华肾脏病杂志,2019,35(3):231-235.DOI:10.3760/cma.j.issn.1001-7097.2019.03.014.
[3] Sakuma H,Hagiwara S,Kantharidis P,et al.Potential targeting of renal fibrosis in diabetic kidney disease using microRNAs[J].Front Pharmacol,2020,11:587689.DOI:10.3389/fphar.2020.587689.
[4] Assmann TS,Recamonde-Mendoza M,de Souza BM,et al.MicroRNAs and diabetic kidney disease:systematic review and bioinformatic analysis[J].Mol Cell Endocrinol,2018,477:90-102.DOI:10.1016/j.mce.2018.06.005.
[5] Liu J,Wei Q,Guo C,et al.Hypoxia,HIF,and associated signaling networks in chronic kidney disease[J].Int J Mol Sci,2017,18(5):950.DOI:10.3390/ijms18050950.
[6] Nayak BK,Shanmugasundaram K,Friedrichs WE,et al.HIF-1 mediates renal fibrosis in OVE26 type 1 diabetic mice[J].Diabetes,2016,65(5):1387-1397.DOI:10.2337/db15-0519.
[7] He J,Jin S,Zhang W,et al.Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression[J].J Cancer,2019,10(24):6003-6013.DOI:10.7150/jca.35097.
[8] Hu J,Chen C,Liu Q,et al.The role of the miR-31/FIH1 pathway in TGF-β-induced liver fibrosis[J].Clin Sci(Lond),2015,129(4):305-317.DOI:10.1042/CS20140012.
[9] Reidy K,Susztak K.Epithelial-mesenchymal transition and podocyte loss in diabetic kidney disease[J].Am J Kidney Dis,2009,54(4):590-593.DOI:10.1053/j.ajkd.2009.07.003.
[10] Jiang Y,Xie F,Lv X,et al.Mefunidone ameliorates diabetic kidney disease in STZ and db/db mice[J].FASEB J,2021,35(1):e21198.DOI:10.1096/fj.202001138RR.
[11] Zhao L,Zou Y,Liu F.Transforming growth Factor-Beta1 in diabetic kidney disease[J].Front Cell Dev Biol,2020,8:187.DOI:10.3389/fcell.2020.00187.
[12] Alomari G,Al-Trad B,Hamdan S,et al.Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of diabetic nephropathy[J].Drug Deliv Transl Res,2020,10(1):216-226.DOI:10.1007/s13346-019-00675-6.
[13] Lv C,Li F,Li X,et al.MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists[J].Nat Commun,2017,8(1):1036.DOI:10.1038/s41467-017-01059-5.
[14] Martinez EC,Lilyanna S,Wang P,et al.MicroRNA-31 promotes adverse cardiac remodeling and dysfunction in ischemic heart disease[J].J Mol Cell Cardiol,2017,112:27-39.DOI:10.1016/j.yjmcc.2017.08.013.
[15] Shi T,Xie Y,Fu Y,et al.The signaling axis of microRNA-31/interleukin-25 regulates Th1/Th17-mediated inflammation response in colitis[J].Mucosal Immunology,2017,10(4):983-995.DOI:10.1038/mi.2016.102.
[16] Li X,Cai W,Xi W,et al.MicroRNA-31 regulates immunosuppression in ang Ⅱ(Angiotensin Ⅱ)-induced hypertension by targeting ppp6C(Protein Phosphatase 6c)[J].Hypertension,2019,73(5):e14-e24.DOI:10.1161/HYPERTENSIONAHA.118.12319.
[17] Liu Z,Zhan W,Zeng M,et al.Enhanced functional properties of human limbal stem cells by inhibition of the miR-31/FIH-1/P21 axis[J].Acta Ophthalmol,2017,95(6):e495-e502.DOI:10.1111/aos.13503.
[18] Lian W,Hu X,Shi R,et al.MiR-31 regulates the function of diabetic endothelial progenitor cells by targeting Satb2[J].Acta Biochim Biophys Sin(Shanghai),2018,50(4):336-344.DOI:10.1093/abbs/gmy010.
[19] Rovira-Llopis S,Escribano-Lopez I,Diaz-Morales N,et al.Downregulation of miR-31 in diabetic nephropathy and its relationship with inflammation[J].Cell Physiol Biochem,2018,50(3):1005-1014.DOI:10.1159/000494485.
[20] Wu Z,Li C,Li Q,et al.Puerarin alleviates cisplatin-induced acute renal damage and upregulates microRNA-31-related signaling[J].Exp Ther Med,2020,20(4):3122-3129.DOI:10.3892/etm.2020.9081.

备注/Memo

备注/Memo:
通信作者:袁凤易,Email:1332911160@qq.com
基金项目:广东省医学科研基金项目(A2021302); 国家自然科学青年项目(81900378)
更新日期/Last Update: 2022-09-10