[1]李晶,董荣娜.人工智能在骨质疏松症中的应用研究进展[J].国际内分泌代谢杂志,2021,41(04):372-375.[doi:10.3760/cma.j.cn121383-20210418-04048]
 Li Jing,Dong Rongna..Research progress of artificial intelligence in osteoporosis[J].International Journal of Endocrinology and Metabolism,2021,41(04):372-375.[doi:10.3760/cma.j.cn121383-20210418-04048]
点击复制

人工智能在骨质疏松症中的应用研究进展()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
41
期数:
2021年04期
页码:
372-375
栏目:
综述
出版日期:
2021-07-20

文章信息/Info

Title:
Research progress of artificial intelligence in osteoporosis
作者:
李晶董荣娜
天津医科大学朱宪彝纪念医院、天津市内分泌研究所、国家卫生健康委激素与发育重点实验室、天津市代谢性疾病重点实验室 300134
Author(s):
Li Jing Dong Rongna.
NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
关键词:
人工智能 骨质疏松症 机器学习 深入学习
Keywords:
Artificial intelligence Osteoporosis Machine Learning Deep learning
DOI:
10.3760/cma.j.cn121383-20210418-04048
摘要:
人工智能在医学领域中的应用日益广泛,骨质疏松症的早期诊断及积极干预对预防骨折、提高生活质量有着非常重要的意义。目前人工智能领域中,已经有一些风险预测的模型开始应用于骨质疏松以及骨折风险的预测,例如,机器学习和深度学习,这样就可以更为高效地预测患者的骨折风险,及早采取有效的干预措施。
Abstract:
Artificial intelligence(AI)has been widely used in medicine. Early diagnosis and active intervention of osteoporosis are great significance in preventing fractures and improving the quality of life. Several risk prediction models are already being used to predict osteoporosis and fracture risk, such as machine learning and deep learning, so that the risk of fracture can be more efficiently predicted for early and effective intervention.

参考文献/References:

[1] Buch VH,Ahmed I,Maruthappu M.Artificial intelligence in medicine:current trends and future possibilities[J].Br J Gen Pract,2018,68(668):143-144.DOI:10.3399/bjgp18X695213.
[2] Kirk B,Zanker J,Duque G.Osteosarcopenia:epidemiology,diagnosis,and treatment-facts and numbers[J].J Cachexia Sarcopenia Muscle,2020,11(3):609-618.DOI:10.1002/jcsm.12567.
[3] Exton-Smith AN,Millard PH,Payne PR,et al.Method for measuring quantity of bone[J].Lancet,1969,2(7631):1153-1154.DOI:10.1016/s0140-6736(69)92482-9.
[4] Narla RR,Ott SM.Structural and metabolic assessment of bone[J].Handb Exp Pharmacol,2020,262:369-396.DOI:10.1007/164_2020_376
[5] Sollmann N,Löffler MT,Kronthaler S,et al.MRI-based quantitative osteoporosis imaging at the spine and femur[J].J Magn Reson Imaging,2021,54(1):12-35.DOI:10.1002/jmri.27260.
[6] Issayeva S,Lesnyak O,Zakroyeva A,et al.Epidemiology of osteoporotic fracture in Kazakhstan and development of a country specific FRAX model[J].Arch Osteoporos,2020,15(1):30.DOI:10.1007/s11657-020-0701-3.
[7] Curtis EM,Moon RJ,Harvey NC,et al.The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide[J].Bone,2017,104:29-38.DOI:10.1016/j.bone.2017.01.024.
[8] Damron TA,Mann KA.Fracture risk assessment and clinical decision making for patients with metastatic bone disease[J].J Orthop Res,2020,38(6):1175-1190.DOI:10.1002/jor.24660.
[9] Martineau P,Leslie WD.The utility and limitations of using trabecular bone score with FRAX[J].Curr Opin Rheumatol,2018,30(4):412-419.DOI:10.1097/BOR.0000000000000504.
[10] Hussain A,Al-Jumeily D,Aljaaf A,et al.Backpropagation approach supported by image compression algorithm for the classification of chronic condition diseases[J].IEEE/ACM Trans Comput Biol Bioinform,2018,PP:1-1.DOI:10.1109/TCBB.2018.2878556.
[11] Zhou K,Wang W,Hu T,et al.Time series forecasting and classification models based on recurrent with attention mechanism and generative adversarial networks[J].Sensors(Basel),2020,20(24):7211.DOI:10.3390/s20247211.
[12] Esteva A,Robicquet A,Ramsundar B,et al.A guide to deep learning in healthcare[J].Nat Med,2019,25(1):24-29.DOI:10.1038/s41591-018-0316-z.
[13] Ongphiphadhanakul B,Rajatanavin R,Chailurkit L,et al.Prediction of low bone mineral density in postmenopausal women by artifcial neural network model compared to logistic regression model[J].J Med Assoc Thai,1997,80:508-515.
[14] Kung AW,Ho AY,Sedrine WB,et al.Comparison of a simple clinical risk index and quantitative bone ultrasound for identifying women at increased risk of osteoporosis[J].Osteoporos Int,2003,14(9):716-721.DOI:10.1007/s00198-003-1428-x.
[15] Wang W,Richards G,Rea S.Hybrid data mining ensemble for predicting osteoporosis risk[J].Conf Proc IEEE Eng Med Biol Soc,2005,2006:886-889.DOI:10.1109/IEMBS.2005.1616557.
[16] Ho-Le TP,Center JR,Eisman JA,et al.Prediction of hip fracture in post-menopausal women using artificial neural network approach[J].Annu Int Conf IEEE Eng Med Biol Soc,2017,2017:4207-4210.DOI:10.1109/EMBC.2017.8037784.
[17] Lee S,Lee JW,Jeong JW,et al.A preliminary study on discrimination of osteoporotic fractured group from nonfractured group using support vector machine[J].Annu Int Conf IEEE Eng Med Biol Soc,2008,2008:474-477.DOI:10.1109/IEMBS.2008.4649193.
[18] Juez F,Suárez-Suárez MA,Lasheras FS,et al.Application of neural networks to the study of the infuence of diet and lifestyle on the value of bone mineral density in post-menopausal women[J].Mathemat Comput Modelling,2011,54(7-8):1665-1670.DOI:10.1016/j.mcm.2010.11.069.
[19] Harrar K,Hamami L,Akkoul S,et al.Osteoporosis assessment using multilayer perceptron neural networks[J].IEEE,2012,217-21.DOI:10.1109/IPTA.2012.6469528.
[20] Villamor E,Monserrat C,Del Río L,et al.Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning[J].Comput Methods Programs Biomed,2020,193:105484.DOI:10.1016/j.cmpb.2020.105484.
[21] Hwang JJ,Lee JH,Han SS,et al.Strut analysis for osteoporosis detection model using dental panoramic radiography[J].Dentomaxillofac Radiol,2017,46(7):20170006.DOI:10.1259/dmfr.20170006.
[22] Iliou T,Anagnostopouls CN, Stephanalkis IM,et al.A novel data preprocessing method for boosting neural network performance:a case study in osteoporosis prediction[J].Inf Sci,2017,380(Suppl C):92-100.DOI:10.1016/j.ins.2015.10.026.
[23] Liu Q,Cui X,Chou YC,et al.Ensemble artifcial neural networks applied to predict the key risk factors of hip bone fracture for elders[J].Biomed Signal Process Control,2015,21(4):146-156.DOI:10.1016/j.bspc.2015.06.002.
[24] Yu X,Ye C,Xiang L.Application of artifcial neural network in the diagnostic system of osteoporosis[J].Neurocomputing,2016,214(19):376-381.DOI:10.1016/j.neucom.2016.06.023.

相似文献/References:

[1]赵一璟 王昆 刘超.噻唑烷二酮类药物临床实用价值和安全性的再认识[J].国际内分泌代谢杂志,2019,39(04):236.[doi:10.3760/cma.j.issn.1673-4157.2019.04.005]
 Zhao Yijing,Wang Kun,Liu Chao.Reconsideration of the efficacy and safety of thiazolidinediones[J].International Journal of Endocrinology and Metabolism,2019,39(04):236.[doi:10.3760/cma.j.issn.1673-4157.2019.04.005]
[2]董荣娜,李晶.人工智能在糖尿病视网膜病变诊断中应用的研究进展[J].国际内分泌代谢杂志,2020,40(06):412.[doi:10.3760/cma.j.cn121383-20200328-03075]
 Dong Rongna,Li Jing.Advances in the application of artificial intelligence in the diagnosis of diabetic retinopathy[J].International Journal of Endocrinology and Metabolism,2020,40(04):412.[doi:10.3760/cma.j.cn121383-20200328-03075]
[3]谭晓霞,张帆.糖尿病微血管病变合并骨质疏松症的研究进展[J].国际内分泌代谢杂志,2021,41(01):48.[doi:10.3760/cma.j.cn121383-20200420-04053]
 Tan Xiaoxia,Zhang Fan..Research progress on diabetic microangiopathy complicated with osteoporosis[J].International Journal of Endocrinology and Metabolism,2021,41(04):48.[doi:10.3760/cma.j.cn121383-20200420-04053]
[4]吴晗 于淼 贾黎静 肖诚.遗传性血色病所致内分泌功能异常的研究进展[J].国际内分泌代谢杂志,2023,43(05):376.[doi:10.3760/cma.j.cn121383-20221211-12028]
 Wu Han,Yu Miao,Jia Lijing,et al.Research advances in endocrinopathies caused by hereditary haemochromatosis[J].International Journal of Endocrinology and Metabolism,2023,43(04):376.[doi:10.3760/cma.j.cn121383-20221211-12028]
[5]樊淑娟,代青湘.高血压与骨质疏松症相关机制研究进展[J].国际内分泌代谢杂志,2023,43(06):489.[doi:10.3760/cma.j.cn121383-20220511-05019]
 Fan Shujuan,Dai Qingxiang..Research progress on the correlation mechanism between hypertension and osteoporosis[J].International Journal of Endocrinology and Metabolism,2023,43(04):489.[doi:10.3760/cma.j.cn121383-20220511-05019]

备注/Memo

备注/Memo:
基金项目:天津市科技计划项目新一代人工智能重大专项(18ZXZNSY00280); 天津市教委社会科学重大项目(2019JWZD54)
通信作者:李晶,Email:2003-victor@163.com
更新日期/Last Update: 1900-01-01