[1]韦茂英,晏蔚田,魏璠,等.非编码RNA在糖尿病认知障碍中的作用[J].国际内分泌代谢杂志,2020,40(06):420-424.[doi:10.3760/cma.j.cn121383-20200322-03060]
 Wei Maoying,Yan Weitian,Wei Fan,et al.Effects of non-coding RNA in diabetic cognitive impairment[J].International Journal of Endocrinology and Metabolism,2020,40(06):420-424.[doi:10.3760/cma.j.cn121383-20200322-03060]
点击复制

非编码RNA在糖尿病认知障碍中的作用()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
40
期数:
2020年06期
页码:
420-424
栏目:
综述
出版日期:
2020-11-20

文章信息/Info

Title:
Effects of non-coding RNA in diabetic cognitive impairment
作者:
韦茂英晏蔚田魏璠魏军平
中国中医科学院广安门医院内分泌科,北京 100053
Author(s):
Wei Maoying Yan Weitian Wei Fan Wei Junping
Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
关键词:
糖尿病认知障碍 微小RNA 长链非编码RNA 环状RNA
Keywords:
Diabetic cognitive impairment MicroRNA Long non-coding RNA Circular RNA
DOI:
10.3760/cma.j.cn121383-20200322-03060
文献标志码:
A
摘要:
糖尿病是全球性公共卫生问题,尤其是在发展中国家。而认知功能障碍是糖尿病的脑微血管并发症之一,其发病机制复杂,治疗也较为棘手。非编码RNA是一类不编码蛋白质的功能性RNA分子,具有丰富的生物学功能,已证实与糖尿病、神经退行性疾病等密切相关。近年来研究发现,一些微小RNA、长链非编码RNA及环状RNA的异常表达参与了糖尿病认知障碍的发生、发展过程,对其进行深入探讨,有望为糖尿病认知障碍发病机制的研究提供新线索,为糖尿病认知障碍的临床治疗提供新策略。
Abstract:
Diabetes mellitus is a global public health problem, especially in developing countries. Cognitive impairment is one of the cerebral microvascular complications of diabetes mellitus, its pathogenesis is complex and the treatment is difficult. Non-coding RNA is a kind of functional RNA which does not encode protein and has rich biological functions. It has been proved to be closely related to diabetes mellitus, neurodegenerative diseases and so on. Recently, many studies have found that the abnormal expression of some miRNAs, lncRNAs and circRNAs were involved in the occurrence and development of diabetic cognitive impairment. Further research will provide new clues for the study of the pathogenesis of diabetic cognitive impairment and new strategies for the clinical treatment of diabetic cognitive impairment.

参考文献/References:

[1] Jash K, Gondaliya P, Kirave P, et al. Cognitive dysfunction:a growing link between diabetes and Alzheimer's disease[J].Drug Dev Res,2020,81(2):144-164.DOI:10.1002/ddr.21579.
[2] Liu S, Lu Y, Cai X, et al. Glycemic control is related to cognitive dysfunction in elderly people with type 2 diabetes mellitus in a rural Chinese population[J].Curr Alzheimer Res,2019,16(10):950-962.DOI:10.2174/1567205016666191023110712.
[3] Tian Y, Xu J, Du X, et al. The interplay between noncoding RNAs and insulin in diabetes[J].Cancer Letters,2018,419:53-63.DOI:10.1016/j.canlet.2018.01.038.
[4] Maniati MS, Maniati M, Yousefi T, et al. New insights into the role of microRNAs and long noncoding RNAs in most common neurodegenerative diseases[J].J Cell Biochem,2019,120(6):8908-8918.DOI:10.1002/jcb.28361.
[5] Danka Mohammed CP, Park JS, Nam HG, et al. MicroRNAs in brain aging[J].Mech Ageing Dev, 2017,168:3-9.DOI:10.1016/j.mad.2017.01.007.
[6] Wang B, Huang J, Li J, et al. Control of macrophage autophagy by miR-384-5p in the development of diabetic encephalopathy[J].Am J Transl Res,2018,10(2):511-518.
[7] Agarwal P, Srivastava R, Srivastava AK, et al. MiR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle[J].Biochim Biophys Acta, 2013,1832(8):1294-1303.DOI:10.1016/j.bbadis.2013.03.021.
[8] Pons-Espinal M, Gasperini C, Marzi MJ,et al. MiR-135a-5p is critical for exercise-induced adult neurogenesis[J].Stem Cell Reports,2019,12(6):1298-1312.DOI:10.1016/j.stemcr.2019.04.020.
[9] Li W, Fang J, Shen J, et al. MicroRNA-135a-5p promotes neuronal differentiation of pluripotent embryonal carcinoma cells by repressing Sox6/CD44 pathway[J].Biochem Biophys Res Commun,2019,509(2):603-610.DOI:10.1016/j.bbrc.2018.12.162.
[10] Kubota K, Nakano M, Kobayashi E, et al. An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells[J].PLoS One, 2018,13(9):e0204252.DOI:10.1371/journal.pone.0204252.
[11] Mai H, Fan W, Wang Y, et al. Intranasal administration of miR-146a agomir rescued the pathological process and cognitive impairment in an AD mouse model[J].Mol Ther Nucleic Acids, 2019,18:681-695.DOI:10.1016/j.omtn.2019.10.002.
[12] Kalani A, Chaturvedi P, Maldonado C,et al. Dementia-like pathology in type-2 diabetes:a novel microRNA mechanism[J].Mol Cell Neurosci,2017,80:58-65.DOI:10.1016/j.mcn.2017.02.005.
[13] Han J, Liu X, Li Y, et al. Sirt1/Nrf2 signalling pathway prevents cognitive impairment in diabetic rats through antioxidative stress induced by miRNA23b3p expression[J].Mol Med Rep,2018,17(6):8414-8422.DOI:10.3892/mmr.2018.8876.
[14] Shen Y, Xu H, Pan X, et al. MiR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus[J].Exp Ther Med,2017,14(6):5589-5596.DOI:10.3892/etm.2017.5254.
[15] Sarkar S, Engler-Chiurazzi EB, Cavendish JZ, et al. Over-expression of miR-34a induces rapid cognitive impairment and Alzheimer's disease-like pathology[J].Brain Res, 2019,1721:146327.DOI:10.1016/j.brainres.2019.146327.
[16] Zhang QJ, Li J, Zhang SY. Effects of TRPM7/miR-34a gene silencing on spatial cognitive function and hippocampal neurogenesis in mice with type 1 diabetes mellitus[J].Mol Neurobiol,2018,55(2):1568-1579.DOI:10.1007/s12035-017-0398-5.
[17] 孟开顺,宋科秀,王小蕊.miRNA-368在糖尿病脑病中的表达水平变化及临床意义[J].卒中与神经疾病,2019,26(6):706-709.DOI:10.3969/j.issn.1007-0478.2019.06.015.
[18] Kenny A, McArdle H, Calero M, et al. Elevated plasma microRNA-206 levels predict cognitive decline and progression to dementia from mild cognitive impairment[J].Biomolecules, 2019,9(11):734.DOI:10.3390/biom9110734.
[19] Zimmer-Bensch G. Emerging roles of long non-coding RNAs as drivers of brain evolution[J].Cells,2019,8(11):1399.DOI:10.3390/cells8111399.
[20] Geng T, Liu Y, Xu Y, et al. H19 lncRNA promotes skeletal muscle insulin sensitivity in part by targeting AMPK[J].Diabetes,2018,67(11):2183-2198.DOI:10.2337/db18-0370.
[21] Li X, Wang H, Yao B, et al. LncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy[J].Sci Rep,2016,31; 6:36340.DOI:10.1038/srep36340.
[22] Thomas AA, Biswas S, Feng B, et al. LncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy[J].Diabetologia,2019,62(3):517-530.DOI:10.1007/s00125-018-4797-6.
[23] Zhao YH, Ji TF, Luo Q, et al. Long non-coding RNA H19 induces hippocampal neuronal apoptosis via wnt signaling in a streptozotocin-induced rat model of diabetes mellitus[J].Oncotarget,2017,8(39):64827-64839.DOI:10.18632/oncotarget.17472.
[24] Yu JL, Li C, Che LH, et al. Downregulation of long noncoding RNA H19 rescues hippocampal neurons from apoptosis and oxidative stress by inhibiting IGF2 methylation in mice with streptozotocin-induced diabetes mellitus[J].J Cell Physiol,2019,234(7):10655-10670.DOI:10.1002/jcp.27746.
[25] Hao L, Li Q, Zhao X, et al. A long noncoding RNA LOC103690121 promotes hippocampus neuronal apoptosis in streptozotocin-induced type 1 diabetes[J].Neurosci Lett,2019,703:11-18.DOI:10.1016/j.neulet.2019.03.006.
[26] Wen X, Han XR, Wang YJ, et al. Down-regulated long non-coding RNA ANRIL restores the learning and memory abilities and rescues hippocampal pyramidal neurons from apoptosis in streptozotocin-induced diabetic rats via the NF-κB signaling pathway[J].J Cell Biochem,2018,119(7):5821-5833.DOI:10.1002/jcb.26769.
[27] 纪田田. LncRNA-Gm4419/P50/Caspase3信号通路在高糖诱导小胶质细胞凋亡中的分子机制[D].济南:济南大学, 2019.
[28] Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J].Mol Cell,2017,66(1):9-21.DOI:10.1016/j.molcel.2017.02.021.
[29] Suenkel C, Cavalli D, Massalini S, et al. A highly conserved circular RNA is required to keep neural cells in a progenitor state in the mammalian brain[J].Cell Rep,2020,30(7):2170-2179.DOI:10.1016/j.celrep.2020.01.083.
[30] Yang D, Yang K, Yang M. Circular RNA in aging and age-related diseases[J].Adv Exp Med Biol, 2018,1086:17-35.DOI:10.1007/978-981-13-1117-8_2.
[31] Rybak-Wolf A, Stottmeister C, Glazˇar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J].Mol Cell,2015,58(5):870-885.DOI:10.1016/j.molcel.2015.03.027.
[32] Pan L, Lian W, Zhang X, et al. Human circular RNA0054633 regulates high glucoseinduced vascular endothelial cell dysfunction through the microRNA218/roundabout 1 and microRNA218/heme oxygenase1 axes[J].Int J Mol Med,2018,42(1):597-606.DOI:10.3892/ijmm.2018.3625.
[33] Wang L, Luo T, Bao Z, et al. Intrathecal circHIPK3 shRNA alleviates neuropathic pain in diabetic rats[J].Biochem Biophys Res Commun,2018,505(3):644-650.DOI:10.1016/j.bbrc.2018.09.158.
[34] Zhao J, Qi X, Bai J, et al. A circRNA derived from linear HIPK3 relieves the neuronal cell apoptosis in spinal cord injury via ceRNA pattern[J].Biochem Biophys Res Commun, 2020,528(2):359-367.DOI:10.1016/j.bbrc.2020.02.108.
[35] Yang JH, Zhang RJ, Lin JJ, et al. The differentially expressed circular RNAs in the substantia nigra and corpus striatum of Nrf2-knockout mice[J].Cell Physiol Biochem,2018,50(3):936-951.DOI:10.1159/000494478.

相似文献/References:

[1]张倍宁 闫如意 周金莲 崔彦.甲状腺癌中miRNA的表达及作用[J].国际内分泌代谢杂志,2018,38(03):167.[doi:10.3760/cma.j.issn.1673-4157.2018.03.006]
 Zhang Beining*,Yan Ruyi,Zhou Jinlian,et al.Expression and function of miRNA in thyroid carcinoma[J].International Journal of Endocrinology and Metabolism,2018,38(06):167.[doi:10.3760/cma.j.issn.1673-4157.2018.03.006]
[2]李雪梅.miRNA在肿瘤糖代谢中的调节作用[J].国际内分泌代谢杂志,2023,43(02):109.[doi:10.3760/cma.j.cn121383-20211025-10054]
 Li Xuemei..The regulatory role of miRNA in tumor glucose metabolism[J].International Journal of Endocrinology and Metabolism,2023,43(06):109.[doi:10.3760/cma.j.cn121383-20211025-10054]

备注/Memo

备注/Memo:
基金项目:中国中医科学院中医药“一带一路”国际合作专项(GH201907) 通信作者:魏军平,Email:weijunping@126.com
更新日期/Last Update: 2020-11-20