[1]陈莹 刘子荣.减重手术改善代谢的新机制[J].国际内分泌代谢杂志,2020,40(04):275-278.[doi:10.3760/cma.j.issn.1673-4157.2020.04.014]
 Chen Ying,Liu Zirong.The novel mechanisms of weight-loss surgery in improving metabolism[J].International Journal of Endocrinology and Metabolism,2020,40(04):275-278.[doi:10.3760/cma.j.issn.1673-4157.2020.04.014]
点击复制

减重手术改善代谢的新机制
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
40
期数:
2020年04期
页码:
275-278
栏目:
基础研究
出版日期:
2020-07-20

文章信息/Info

Title:
The novel mechanisms of weight-loss surgery in improving metabolism
作者:
陈莹1 刘子荣2
1天津市职业病防治院外科 300011; 2天津市第一中心医院肝胆外科 300192
Author(s):
Chen Ying1 Liu Zirong2
1Department of Surgery, Tianjin Occupational Diseases Precaution and Therapeutic Hospital, Tianjin 300011, China; 2Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China
关键词:
减重手术 代谢 肠道菌群 表观遗传学
Keywords:
Weight-loss surgery Metabolism Intestinal flora Epigenetics
DOI:
10.3760/cma.j.issn.1673-4157.2020.04.014
摘要:
减重手术是治疗肥胖的有效手段之一,其可在有效减轻体重的同时,改善患者的代谢状况。减重手术可通过改变胃部结构使肠道菌群的组成发生改变,而后者可通过多种机制改善机体代谢。另外,减重手术还带来了表观遗传学方面的改变,进而对机体代谢产生有利影响。胆汁酸在调节机体代谢方面同样发挥重要作用,而减重手术可使胆汁酸水平升高。因此,减重手术可通过多种机制改善机体代谢。
Abstract:
Weight-loss surgery is one of the effective methods to treat obesity, which can effectively reduce body weight and improve the metabolism of patients. Weight-loss surgery can change the composition of intestinal flora by changing the structure of the stomach, and the latter can improve the metabolism of the body through a variety of mechanisms. In addition, weight-loss surgery also brought about epigenetic changes, which in turn had a beneficial effect on metabolism. Bile acids also plays an important role in regulating metabolism, while weight-loss surgery can increase the level of bile acids. Therefore, weight-loss surgery can improve the metabolism of the body through a variety of mechanisms.

参考文献/References:

[1] Inge TH, Courcoulas AP, Jenkins TM, et al. Five-year outcomes of gastric bypass in adolescents as compared with adults[J]. N Engl J Med,2019, 380(22):2136-2145.DOI:10.1056/NEJMoa1813909.
[2] Liou AP, Paziuk M, Luevano JM, Jr., et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J]. Sci Transl Med,2013,5(178):178ra141.DOI:10.1126/scitranslmed.3005687.
[3] Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes:correlation with inflammatory and metabolic parameters[J]. Pharmacogenomics, 2013,13(6):514-522.DOI:10.1038/tpj.2012.43.
[4] Davies NK, O'Sullivan JM, Plank LD, et al. Altered gut microbiome after bariatric surgery and its association with metabolic benefits:a systematic review[J]. Surg Obes Relat Dis,2019,15(4):656-665.DOI:10.1016/j.soard.2019.01.033.
[5] Medina DA, Pedreros JP, Turiel D, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients[J]. PeerJ,2017,5:e3443.DOI:10.7717/peerj.3443.
[6] Murphy R, Tsai P, Jüllig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission[J]. Obes Surg,2017,27(4):917-925.DOI:10.1007/s11695-016-2399-2.
[7] Anhê FF, Varin TV, Schertzer JD, et al. The gut microbiota as a mediator of metabolic benefits after bariatric surgery[J]. Can J Diabetes,2017, 41(4):439-447.DOI:10.1016/j.jcjd.2017.02.002.
[8] Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation[J]. Cell Metab,2015,22(2):228-238.DOI:10.1016/j.cmet.2015.07.009.
[9] Janmohammadi P, Sajadi F, Alizadeh S, et al. Comparison of energy and food intake between gastric bypass and sleeve gastrectomy:a meta-analysis and systematic review[J]. Obes Surg,2019,29(3):1040-1048.DOI:10.1007/s11695-018-03663-w.
[10] Zmora N, Suez J, Elinav E. You are what you eat:diet, health and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol,2019,16(1):35-56.DOI:10.1038/s41575-018-0061-2.
[11] Morcillo S, Macías-González M, Tinahones FJ. The effect of metabolic and bariatric surgery on DNA methylation patterns[J]. Curr Atheroscler Rep,2017,19(10):40.30.DOI:10.1007/s11883-017-0676-8.
[12] Sala P, de Miranda Torrinhas RSM, Fonseca DC, et al. Tissue-specific methylation profile in obese patients with type 2 diabetes before and after Roux-en-Y gastric bypass[J].Diabetol Metab Syndr,2017,9:15.DOI:10.1186/s13098-017-0214-4.
[13] Martín-Núñez GM, Cabrera-Mulero A, Alcaide-Torres J, et al. No effect of different bariatric surgery procedures on LINE-1 DNA methylation in diabetic and nondiabetic morbidly obese patients[J]. Surg Obes Relat Dis,2017, 13(3):442-450.DOI:10.1016/j.soard.2016.10.014.
[14] Day SE, Garcia LA, Coletta RL, et al. Alterations of sorbin and SH3 domain containing 3(SORBS3)in human skeletal muscle following Roux-en-Y gastric bypass surgery[J]. Clin Epigenetics,2017,9:96.DOI:10.1186/s13148-017-0396-5.
[15] Ahrens M, Ammerpohl O, von Schönfels W, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery[J]. Cell Metab,2013,18(2):296-302.DOI:10.1016/j.cmet.2013.07.004.
[16] Benton MC, Johnstone A, Eccles D, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss[J]. Genome Biol,2015,16(1):8.DOI:10.1186/s13059-014-0569-x.
[17] Macías-González M, Martín-Núñez GM, Garrido-Sánchez L, et al. Decreased blood pressure is related to changes in NF-kB promoter methylation levels after bariatric surgery[J]. Surg Obes Relat Dis, 2018,14(9):1327-1334.DOI:10.1016/j.soard.2018.06.011.
[18] Ortega FJ, Mercader JM, Moreno-Navarrete JM, et al. Surgery-induced weight loss is associated with the downregulation of genes targeted by microRNAs in adipose tissue[J]. J Clin Endocrinol Metab,2015,100(11):E1467-E1476.DOI:10.1210/jc.2015-2357.
[19] Hubal MJ, Nadler EP, Ferrante SC, et al. Circulating adipocyte-derived exosomal microRNAs associated with decreased insulin resistance after gastric bypass[J]. Obesity(Silver Spring),2017,25(1):102-110.DOI:10.1002/oby.21709.
[20] Lirun K, Sewe M, Yong W. A pilot study:the effect of Roux-en-Y gastric bypass on the serum microRNAs of the type 2 diabetes patient[J]. Obes Surg,2015,25(12):2386-2392.DOI:10.1007/s11695-015-1711-x.
[21] Alkandari A, Ashrafian H, Sathyapalan T, et al. Improved physiology and metabolic flux after Roux-en-Y gastric bypass is associated with temporal changes in the circulating microRNAome:a longitudinal study in humans[J]. BMC Obes,2018,5:20.DOI:10.1186/s40608-018-0199-z.
[22] Liang Y, Yu B, Wang Y, et al. Duodenal long noncoding RNAs are associated with glycemic control after bariatric surgery in high-fat diet-induced diabetic mice[J]. Surg Obes Relat Dis,2017,13(7):1212-1226.DOI:10.1016/j.soard.2017.02.010.
[23] Liang Y, Yu B, Wang Y, et al. Jejunal long noncoding RNAs are associated with glycemic control via gut-brain axis after bariatric surgery in diabetic mice[J]. Surg Obes Relat Dis, 2018,14(6):821-832.DOI:10.1016/j.soard.2018.03.006.
[24] Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass:potential contribution to improved glucose and lipid metabolism[J].Obesity(Silver Spring),2009,17(9):1671-1677.DOI:10.1038/oby.2009.102.
[25] Jahansouz C, Xu H, Hertzel AV, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery[J]. Ann Surg,2016,264(6):1022-1028.DOI:10.1097/sla.0000000000001552.
[26] Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap--bile acids in metabolic control[J]. Nat Rev Endocrinol, 2014,10(8):488-498.DOI:10.1038/nrendo.2014.60.
[27] Mazidi M, de Caravatto PP, Speakman JR, et al. Mechanisms of action of surgical interventions on weight-related diseases:the potential role of bile acids[J]. Obes Surg,2017,27(3):826-836.DOI:10.1007/s11695-017-2549-1.
[28] Ding L, Sousa KM, Jin L, et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice[J]. Hepatology,2016, 64(3):760-773.DOI:10.1002/hep.28689.
[29] Sachdev S, Wang Q, Billington C, et al. FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes[J]. Obes Surg,2016,26(5):957-965.DOI:10.1007/s11695-015-1834-0.
[30] Gerhard GS, Styer AM, Wood GC, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass[J]. Diabetes Care,2013,36(7):1859-1864.DOI:10.2337/dc12-2255.
[31] Steinert RE, Peterli R, Keller S, et al. Bile acids and gut peptide secretion after bariatric surgery:a 1-year prospective randomized pilot trial[J]. Obesity(Silver Spring),2013,21(12):E660-668.DOI:10.1002/oby.20522.
[32] Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci U S A,2006,103(10):3920-3925.DOI:10.1073/pnas.0509592103.

相似文献/References:

[1]郑辉 常宝成 葛焕琦.3'-碘甲状腺原氨酸:保护心脏和调节代谢的新武器[J].国际内分泌代谢杂志,2019,39(02):140.[doi:10.3760/cma.j.issn.1673-4157.2019.02.013]
 Zheng Hui,Chang Baocheng,Ge Huanqi.3'-Iodothyronamine: a new weapon to protect the heart and regulate metabolism[J].International Journal of Endocrinology and Metabolism,2019,39(04):140.[doi:10.3760/cma.j.issn.1673-4157.2019.02.013]
[2]刘元君,黄菲,陈国芳,等.不同饮食成分及模式在体重管理中作用的异同及争议[J].国际内分泌代谢杂志,2022,42(05):360.[doi:10.3760/cma.j.cn121383-20210913-09033]
 Liu Yuanjun,Huang Fei,Chen Guofang,et al.Distinctions and controversies on effects of different dietary components and patterns in weight management[J].International Journal of Endocrinology and Metabolism,2022,42(04):360.[doi:10.3760/cma.j.cn121383-20210913-09033]
[3]张畅,陈莹,袁恒杰,等.黄酮衍生物C45对高脂诱导肥胖小鼠的糖脂代谢改善作用及机制探讨[J].国际内分泌代谢杂志,2022,42(06):510.[doi:10.3760/cma.j.cn121383-20220722-07043]
 Zhang Chang,Chen Ying,Yuan Hengjie..Effect and mechanism of flavonoid derivative C45 on the metabolism of glucose and lipid in high fat diet-induced obese mice[J].International Journal of Endocrinology and Metabolism,2022,42(04):510.[doi:10.3760/cma.j.cn121383-20220722-07043]

备注/Memo

备注/Memo:
通信作者:刘子荣,Email:liuzirong0730@163.com
Corresponding author: Liu Zirong, Email:liuzirong0730@163.com
更新日期/Last Update: 2020-07-20