[1]史亚男 穆标 周晓丽 闫丽辉 左湘川 袁继红.曲古霉素调节肝细胞糖异生的机制研究[J].国际内分泌代谢杂志,2018,38(02):84-88.[doi:10.3760/cma.j.issn.1673-4157.2018.02.003]
 Shi Yanan*,Mu Biao,Zhou Xiaoli,et al.Mechanisms of trichostatin A in the regulation of hepatocyte gluconeogenesis[J].International Journal of Endocrinology and Metabolism,2018,38(02):84-88.[doi:10.3760/cma.j.issn.1673-4157.2018.02.003]
点击复制

曲古霉素调节肝细胞糖异生的机制研究()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
38
期数:
2018年02期
页码:
84-88
栏目:
论著
出版日期:
2018-03-20

文章信息/Info

Title:
Mechanisms of trichostatin A in the regulation of hepatocyte gluconeogenesis
作者:
史亚男 穆标 周晓丽 闫丽辉 左湘川 袁继红
30070 天津医科大学代谢病医院内分泌研究所,卫生部激素与发育重点实验室,天津市代谢性疾病 重点实验室(史亚男、穆标、闫丽辉、袁继红); 300011 天津市疾病预防控制中心毒理科(周晓丽); 430012 武汉市汉口医院内分泌科(左湘川)
Author(s):
Shi Yanan* Mu Biao Zhou Xiaoli Yan Lihui Zuo Xiangchuan Yuan Jihong.*
*Key Laboratory of Hormones and Development(Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, The Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
关键词:
曲古霉素 蛋白激酶B 叉头转录因子O1 糖异生
Keywords:
Trichostatin A Protein kinase B Forkhead box transcription factor O1 Gluconeogenesis
DOI:
10.3760/cma.j.issn.1673-4157.2018.02.003
摘要:
目的 探讨组蛋白去乙酰化酶(HDAC)抑制剂曲古霉素参与调节肝细胞糖异生的机制。方法 体外培养人肝细胞系HL7702,分为对照组(5 μl DMSO)、胰岛素组(5 μl DMSO+100 nmol/L胰岛素)、曲古霉素联合胰岛素组(2 mol/L曲古霉素+100 nmol/L胰岛素)、地塞米松组(1 mol/L地塞米松)、曲古霉素联合地塞米松组(2 mol/L曲古霉素+1 mol/L地塞米松)。采用体外葡萄糖输出、Western印迹和实时荧光定量RT-PCR的方法检测肝细胞体外葡萄糖输出、胰岛素信号分子蛋白激酶B(Akt)、叉头转录因子O1(FoxO1)的磷酸化和磷酸烯醇式丙酮酸羧激酶(PEPCK)、葡萄糖-6-磷酸酶(G6Pase)基因的表达。结果 与对照组相比,胰岛素组葡萄糖输出降低(t=5.35,P<0.01),而与胰岛素组相比,曲古霉素联合胰岛素组葡萄糖输出增加(t=-14.049,P<0.01); 与对照组相比,地塞米松组葡萄糖输出升高(t=-2.782, P<0.01),与地塞米松组相比,曲古霉素联合地塞米松组葡萄糖输出升高(t=-2.955,P<0.05)。与对照组相比,胰岛素组磷酸化Akt酪氨酸308、磷酸化Akt丝氨酸473、磷酸化FoxO1丝氨酸256蛋白水平均升高(t=-5.356、-5.004、-3.073,P均< 0.05),PEPCK和G6Pase mRNA水平均降低(t= 5.215、4.777,P均<0.01); 与胰岛素组相比,曲古霉素联合胰岛素组磷酸化Akt酪氨酸308、磷酸化Akt丝氨酸473、磷酸化FoxO1丝氨酸256蛋白水平均降低(t=22.152、26.759、3.907,P均<0.01),PEPCK和G6Pase mRNA水平均升高(t=-3.144、-2.819,P均<0.05)。结论 曲古霉素能够通过抑制Akt和FoxO1磷酸化活性,促进糖异生调节基因的表达,进而促进肝细胞葡萄糖输出。
Abstract:
Objective To investigate the mechanisms of histone deacetylase inhibitor(HDAC)inhibitor trichostatin A(TSA)in the regulation of hepatocyte gluconeogenesis.Methods Human HL7702 cells were cultured and divided into control group(5 μl DMSO), insulin group(5 μl DMSO+100 nmol/L insulin), TSA combined with insulin group(2 mol/L TSA+100 nmol/L insulin), dexamethasone group(1 mol/L dexamethasone)and TSA combined with dexamethasone group(2 mol/L TSA + 1 mol/L dexamethasone). In vitro glucose assay, Western blotting and real-time PCR were used to analyze the level of glucose production, phosphorylation of protein kinase B(Akt), forkhead box transcription factor O1(FoxO1), gene expression of phosphoenolpyruvate carboxykinase(PEPCK)and glucose-6-phosphatase(G6Pase).Results Compared with control group, the glucose production was decreased in insulin group(t=5.35, P<0.01). Compared with insulin group,the glucose production was increased in TSA combined with insulin group(t=-14.049, P<0.01). Compared with control group,the glucose production was increased in dexamethasone group(t=-2.782, P< 0.01), and compared with dexamethasone group, the glucose production was increased in TSA combined with dexamethasone group(t=-2.955, P<0.05). Compared with control group, the phosphorylation of Akt at T308 and S473 as well as the phosphorylation of FoxO1 at S256 were increased(t=-5.356, -5.004, -3.073, all P<0.05), but the level of PEPCK mRNA and G6Pase mRNA were decreased in insulin group(t=5.215, 4.777, all P<0.01). Compared with insulin group, the phosphorylation of Akt at T308 and S473 as well as the phosphorylation of FoxO1 at S256 were decreased(t=22.152, 26.759, 3.907,all P<0.01), but the level of PEPCK mRNA and G6Pase mRNA were increased in TSA combined with insulin group(t=-3.144, -2.819, all P<0.05).Conclusions TSA stimulates the expression of gluconeogentic related genes through its inhibition of the phosphorylation of Akt and FoxO1, and therefore promotes glucose output of hepatic cells.

参考文献/References:


[1] Chung ST,Hsia DS,Chacko SK,et al.Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes[J].Diabetologia, 2015,58(3):596-603. DOI:10.1007/s00125-014-3455-x.
[2] Cang S, Ma Y, Liu D.New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer[J].J Hematol Oncol,2009,2:22.DOI:10.1186/1756-8722-2-22.
[3] Ma X, Ezzeldin HH, Diasio RB. Histone deacetylase inhibitors: current status and overview of recent clinical trials[J].Drugs,2009,69(14):1911-1934.DOI:10.2165/11315680-000000000-00000.
[4] Ye J. Improving insulin sensitivity with HDAC inhibitor[J].Diabetes, 2013,62(3):685-687.DOI:10.2337/db12-1354.
[5] Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome[J].Nature,2001,414(6865):821-827.DOI:10.1038/414821a.
[6] 赵惠中,萧建中,杨文英,等.肝脏胰岛素抵抗与肝糖输出调控基因表达的关系[J].中华肝脏病杂志,2006,14(1):45-48. DOI:10.3760/j.issn:1007-3418.2006.01.012.
[7] Goto M,Yoshioka T,Battelino T,et al.TNFalpha decreases gluconeogenesis in hepatocytes isolated from 10-day-old rats[J].Pediatr Res,2001,49(4):552-557.DOI:10.1203/00006450-200104000-00018.
[8] Kodama S,Moore R,Yamamoto Y,et al.Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene[J].Biochem J,2007,407(3):373-381.DOI:10.1042/BJ20070481.
[9] Matsuzaki H,Daitoku H,Hatta M,et al.Insulin-induced phosphorylation of FKHR(Foxo1)targets to proteasomal degradation[J].Proc Natl Acad Sci U S A,2003,100(20):11285-11290.DOI:10.1073/pnas.1934283100.
[10] Guan KL,Xiong Y.Regulation of intermediary metabolism by protein acetylation[J].Trends Biochem Sci,2011,36(2):108-116.DOI:10.1016/j.tibs.2010.09.003.
[11] Raciti GA,Nigro C,Longo M,et al.Personalized medicine and type 2 diabetes: lesson from epigenetics[J].Epigenomics,2014,6(2):229-238.DOI:10.2217/epi.14.10.
[12] McGee SL,Hargreaves M.Histone modifications and skeletal muscle metabolic gene expression[J].Clin Exp Pharmacol Physiol,2010,37(3):392-396.DOI:10.1111/j.1440-1681.2009.05311.x.
[13] Oiso H,Furukawa N,Suefuji M,et al.The role of class Ⅰ histone deacetylase(HDAC)on gluconeogenesis in liver[J].Biochem Biophys Res Commun,2011,404(1):166-172. DOI:10.1016/j.bbrc.2010.11.086.
[14] Sun C,Zhou J.Trichostatin A improves insulin stimulated glucose utilization and insulin signaling transduction through the repression of HDAC2[J].Biochem Pharmacol,2008,76(1):120-127.DOI:10.1016/j.bcp.2008.04.004.
[15] 曹晨, 吴洋, 冷燕,等. 组蛋白去乙酰化酶抑制剂介导的Akt/Gsk3β通路激活在糖尿病大鼠心肌缺血再灌注损伤中的保护作用[J]. 武汉大学学报(医学版),2016,37(3):354-357. DOI:10.14188/j.1671-8852.2016.03.003.
[16] Zhang P,Guo Z,Wu Y,et al.Histone deacetylase inhibitors inhibit the proliferation of gallbladder carcinoma cells by suppressing AKT/mTOR signaling[J].PLoS One,2015,10(8):e0136193.DOI:10.1371/journal.pone.0136193.
[17] Zhang P,Zhu X,Wu Y,et al.Histone deacetylase inhibitors reduce WB-F344 oval cell viability and migration capability by suppressing AKT/mTOR signaling in vitro[J].Arch Biochem Biophys,2016,590:1-9.DOI:10.1016/j.abb.2015.11.004.
[18] Li LF,Lee CS,Lin CW,et al.Trichostatin A attenuates ventilation-augmented epithelial-mesenchymal transition in mice with bleomycin-induced acute lung injury by suppressing the Akt pathway[J].PLoS One,2017,12(2):e0172571.DOI:10.1371/journal.pone.0172571.
[19] Guo W,Shan B,Klingsberg RC,et al. Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histonedeacetylase inhibition[J].Am J Physiol Lung Cell Mol Physiol,2009,297(5):L864-L870.DOI:10.1152/ajplung.00128.2009.
[20] Ma R,Zhang W,Tang K,et al.Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma[J].Nat Commun,2013,4:2508.DOI:10.1038/ncomms3508.

备注/Memo

备注/Memo:
基金项目:天津市教委科研计划项目(2017KJ211); 天津医科大学科学基金(2015KYZQ07); 天津市教委科研计划项目(2016YD12)
通信作者:袁继红,Email:jyuan@tmu.edu.cn
更新日期/Last Update: 1900-01-01