[1]陈明云,李连喜.糖尿病大血管病变的表观遗传学标志物[J].国际内分泌代谢杂志,2016,36(02):139-142.[doi:10.3760/cma.j.issn.1673-4157.2016.02.015]
 Chen Mingyun,Li Lianxi..Epigenetic biomarkers of diabetic macrovascular complications[J].International Journal of Endocrinology and Metabolism,2016,36(02):139-142.[doi:10.3760/cma.j.issn.1673-4157.2016.02.015]
点击复制

糖尿病大血管病变的表观遗传学标志物()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
36
期数:
2016年02期
页码:
139-142
栏目:
综述
出版日期:
2016-03-20

文章信息/Info

Title:
Epigenetic biomarkers of diabetic macrovascular complications
作者:
陈明云李连喜
200233 上海交通大学附属第六人民医院内分泌代谢科,上海市糖尿病研究所,上海市糖尿病临床医学中心,上海市糖尿病重点实验室
Author(s):
Chen Mingyun Li Lianxi.
Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
关键词:
糖尿病 大血管病变 表观遗传 生化标志物
Keywords:
Diabetes mellitus Macrovascular complications Epigenetics Biomarkers
DOI:
10.3760/cma.j.issn.1673-4157.2016.02.015
摘要:
表观遗传学是指在不改变核苷酸序列的情况下,基因的表达活性发生了可遗传的变化,它包括DNA甲基化、组蛋白修饰、miRNA等。表观遗传学在糖尿病大血管病变的发生、发展过程发挥了重要的作用。近年来研究发现了一些反映糖尿病大血管病变的表观遗传学标志物,包括LINE-1甲基化、Alu甲基化、DDAH2启动子甲基化; Sirt1与SET7等组蛋白修饰相关酶; miRNA-126、miRNA-21、miRNA-125b等。随着表观遗传改变检测手段的改进,表观遗传学标志物有可能成为糖尿病大血管病变新的诊断手段。
Abstract:
Epigenetics are heritable traits that do not change DNA sequence, including DNA methylation, histone modification, and noncoding RNA action and so on. Epigenetics play an important role in the occurrence and development of diabetic macrovascular disease. Recently, a number of epigenetic biomarkers have been identified and used to reflex diabetic macrovascular complications, such as LINE-1 methylation, Alu methylation, methylation of DDAH2 promoter, Sirt1 and SET7 which take part in histone modification, miRNA-126, miRNA-21 and miRNA-125b, etc. With the improvement of detection of epigenetic changes, epigenetic biomarkers may become new diagnostic tools for diabetic macrovascular complications.

参考文献/References:

[1] Cencioni C,Spallotta F,Greco S,et al. Epigenetic mechanisms of hyperglycemic memory[J]. Int J Biochem Cell Biol,2014,51:155-158.DOI: 10.1016/j.biocel.2014.04.014.
[2] Bird A. Perceptions of epigenetics[J].Nature,2007,447(7143):396-398.
[3] Dunn J,Qiu H,Kim S,et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis[J].J Clin Invest,2014,124(7):3187-3199. DOI: 10.1172/JCI74792.
[4] Heyn H,Esteller M. DNA methylation profiling in the clinic: applications and challenges[J]. Nat Rev Genet,2012,13(10):679-692. DOI: 10.1038/nrg3270.
[5] Wei L,Liu S,Su Z,et al. LINE-1 hypomethylation is associated with the risk of coronary heart disease in Chinese population[J].Arq Bras Cardiol,2014,102(5):481-488.
[6] Greiβel A,Culmes M,Napieralski R,et al. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques[J].Thromb Haemost,2015,114(2):390-402. DOI:10.1160/TH14-10-0852.
[7] Martín-Núñez GM,Rubio-Martín E,Cabrera-Mulero R,et al. Type 2 diabetes mellitus in relation to global LINE-1 DNA methylation in peripheral blood: a cohort study[J].Epigenetics,2014,9(10):1322-1328. DOI:10.4161/15592294.2014.969617.
[8] Pearce MS,McConnell JC,Potter C,et al. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles[J].Int J Epidemiol,2012,41(1):210-217. DOI:10.1093/ije/dys020.
[9] Kim M,Long TI,Arakawa K,et al. DNA methylation as a biomarker for cardiovascular disease risk[J].PLoS One,2010,5(3):e9692. DOI: 10.1371/journal.pone.0009692.
[10] Niu PP,Cao Y,Gong T,et al. Hypermethylation of DDAH2 promoter contributes to the dysfunction of endothelial progenitor cells in coronaryartery disease patients[J].J Transl Med,2014,12:170. DOI:10.1186/1479-5876-12-170.
[11] Paneni F,Volpe M,Lüscher TF,et al.SIRT1,p66(Shc),and Set7/9 in vascular hyperglycemic memory:bringing all the strands together[J].Diabetes,2013,62(6):1800-1807. DOI:10.2337/db12-1648.
[12] Paneni F,Mocharla P,Akhmedov A,et al. Gene silencing of the mitochondrial adaptor p66(Shc)suppresses vascular hyperglycemic memory in diabetes[J].Circ Res,2012,111(3):278-289. DOI:10.1161/CIRCRESAHA.112.266593.
[13] Kim HJ,Kim SH,Yun JM. Fisetin inhibits hyperglycemia-induced proinflammatory cytokine production by epigenetic mechanisms[J].Evid Based Complement Alternat Med,2012,2012:639469. DOI: 10.1155/2012/639469.
[14] 许琼, 高鑫. SIRT1对糖尿病大血管病变的改善作用研究进展[J]. 中国临床医学, 2012,19(2):183-186. DOI: 10.3969/j.issn.1008-6358.2012.02.035.
[15] Keating ST,El-Osta A. Epigenetic changes in diabetes[J].Clin Genet,2013,84(1):1-10. DOI:10.1111/cge.12121.
[16] Keating ST,Ziemann M,Okabe J,et al. Deep sequencing reveals novel Set7 networks[J].Cell Mol Life Sci,2014,71(22):4471-4486. DOI:10.1007/s00018-014-1651-y.
[17] Okabe J,Orlowski C,Balcerczyk A,et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells[J].Circ Res,2012,110(8):1067-1076. DOI:10.1161/CIRCRESAHA.112.266171.
[18] Paneni F,Costantino S,Battista R,et al. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patientswith type 2 diabetes mellitus[J]. Circ Cardiovasc Genet,2015,8(1):150-158. DOI:10.1161/CIRCGENETICS.114.000671.
[19] Gauthier N,Caron M,Pedro L,et al. Development of homogeneous nonradioactive methyltransferase and demethylase assays targeting histone H3lysine 4[J].J Biomol Screen,2012,17(1):49-58.DOI: 10.1177/1087057111416659.
[20] Chien HY,Lee TP,Chen CY,et al. Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabeticcomplications[J]. J Chin Med Assoc,2015,78(4):204-211.DOI: 10.1016/j.jcma.2014.11.002.
[21] Rawal S,Manning P,Katare R. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease[J].Cardiovasc Diabetol,2014,13:44.DOI: 10.1186/1475-2840-13-44.
[22] Jansen F,Yang X,Hoelscher M,et al.Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles[J].Circulation,2013,128(18):2026-2038. DOI:10.1161/CIRCULATIONAHA.113.001720.
[23] Fleissner F,Jazbutyte V,Fiedler J,et al.Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients withcoronary artery disease through a microRNA-21-dependent mechanism[J].Circ Res,2010,107(1):138-143. DOI:10.1161/CIRCRESAHA.110.216770.
[24] Zeng J,Xiong Y,Li G,et al. MiR-21 is overexpressed in response to high glucose and protects endothelial cells from apoptosis[J].Exp Clin Endocrinol Diabetes,2013,121(7):425-430. DOI: 10.1055/s-0033-1345169.
[25] Kato M,Castro NE,Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications[J].Free Radic Biol Med,2013,64:85-94. DOI: 10.1016/j.freeradbiomed.2013.06.009.

相似文献/References:

[1]郑少雄.罗格列酮和心血管风险——近期文献解读[J].国际内分泌代谢杂志,2007,(04):231.
[2]凌厉,朱本章.胰岛素类似物安全性研究进展[J].国际内分泌代谢杂志,2007,(04):234.
[3]李颖,刘东方.餐后1小时血糖升高的意义及干预[J].国际内分泌代谢杂志,2007,(04):235.
[4]崔巍,施秉银.内质网应激介导β细胞生存/死亡的研究进展[J].国际内分泌代谢杂志,2007,(04):256.
[5]杨叶虹,胡仁明.SELDI-TOF-MS技术及其在糖尿病研究中的应用[J].国际内分泌代谢杂志,2007,(04):261.
[6]高妍.针对华人糖尿病特点优化降糖方案[J].国际内分泌代谢杂志,2007,(04):269.
[7]杨志霞,郭莹辉,杨永生,等.胰岛素泵和多次皮下注射治疗糖尿病的比较[J].国际内分泌代谢杂志,2007,(04):273.
[8]周建英,马向华.胃旁路术减肥同时改善糖代谢的机制[J].国际内分泌代谢杂志,2007,(04):285.
[9]李翠柳,朱大龙.破译肠道代谢信息,驱动治疗革新[J].国际内分泌代谢杂志,2014,(06):383.[doi:10.3760/cma.j.issn.1673-4157.2014.06.006]
 Li Cuiliu*,Zhu Dalong..Deciphering metabolic messages from the gut drives therapeutic innovation[J].International Journal of Endocrinology and Metabolism,2014,(02):383.[doi:10.3760/cma.j.issn.1673-4157.2014.06.006]
[10]袁捷 姜云生 杜彦丽 王肃.1型糖尿病对小鼠早孕时期子宫肌层结构和细胞增殖的影响[J].国际内分泌代谢杂志,2015,(01):6.[doi:10.3760/cma.j.issn.1673-4157.2015.01.002]
 Yuan JieJiang YunshengDu YanliWang Su.Effects of type 1 diabetes on the muscularis structure and cell proliferation of uterine in mice during early pregnancy[J].International Journal of Endocrinology and Metabolism,2015,(02):6.[doi:10.3760/cma.j.issn.1673-4157.2015.01.002]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81170759),上海市科学技术委员会资助项目(15411960600)
更新日期/Last Update: 2016-03-20