参考文献/References:
[1] Merino B,Fernández-Díaz CM,Cózar-Castellano I,et al.Intestinal fructose and glucose metabolism in health and disease[J].Nutrients,2019,12(1):94.DOI:10.3390/nu12010094.
[2] Jang C,Hui S,Lu W,et al.The small intestine converts dietary fructose into glucose and organic acids[J].Cell Metab,2018,27(2):351-361e3.DOI:10.1016/j.cmet.2017.12.016.
[3] 张晶,李昊,师建辉,等.果糖与代谢性疾病[J].中国病理生理杂志,2020,36(4):163-168.DOI:10.3969/j.issn.1000-4718.2020-04-022.
[4] Shi YN,Liu YJ,Xie Z,et al.Fructose and metabolic diseases:too much to be good [J].Chin Med J(Engl),2021,134(11):1276-1285.DOI:10.1097/CM9.0000000000001545.
[5] Kim M,Astapova II,Flier SN,et al.Intestinal,but not hepatic,ChREBP is required for fructose tolerance[J].JCI Insight,2017,2(24):e96703.DOI:10.1172/jci.insight.96703.
[6] Ko CW,Qu J,Black DD,et al.Regulation of intestinal lipid metabolism:current concepts and relevance to disease[J].Nat Rev Gastroenterol Hepatol,2020,17(3):169-183.DOI:10.1038/s41575-019-0250-7.
[7] Davies JP,Levy B,Ioannou YA.Evidence for a Niemann-pick C(NPC)gene family:identification and characterization of NPC1L1[J].Genomics,2000,65(2):137-145.DOI:10.1006/geno.2000.6151.
[8] Li PS,Fu ZY,Zhang YY,et al.The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1[J].Nat Med,2014,20(1):80-86.DOI:10.1038/nm.3417.
[9] Ge L,Qi W,Wang LJ,et al.Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake[J].Proc Natl Acad Sci U S A,2011,108(2):551-556.DOI:10.1073/pnas.1014434108.
[10] Zhang YY,Fu ZY,Wei J,et al.A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption[J].Science,2018,360(6393):1087-1092.DOI:10.1126/science.aao6575.
[11] Ge L,Wang J,Qi W,et al.The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1[J].Cell Metab,2008,7(6):508-519.DOI:10.1016/j.cmet.2008.04.001.
[12] Johnson TA,Pfeffer SR.Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis[J].Mol Biol Cell,2016,27(11):1845-1852.DOI:10.1091/mbc.E16-03-0154.
[13] Worthington JJ,Reimann F,Gribble FM.Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity[J].Mucosal Immunol,2018,11(1):3-20.DOI:10.1038/mi.2017.73.
[14] Haber AL,Biton M,Rogel N,et al.A single-cell survey of the small intestinal epithelium[J].Nature,2017,551(7680):333-339.DOI:10.1038/nature24489.
[15] Gehart H,HVE Johan,Hamer K,et al.Identification of enteroendocrine regulators by real-time single-cell differentiation mapping[J].Cell,2019,176(5):1158-1173.e16.DOI:10.1016/j.cell.2018.12.029.
[16] Baggio LL,Drucker DJ.Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease[J].Mol Metab,2021,46:101090.DOI:10.1016/j.molmet.2020.101090.
[17] Fria JP,Nauck MA,Van J,et al.Efficacy and safety of LY3298176,a novel dual GIP and GLP-1 receptor agonist,in patients with type 2 diabetes:a randomised,placebo-controlled and active comparator-controlled phase 2 trial[J].Lancet,2018,392(10160):2180-2193.DOI:10.1016/S0140-6736(18)32260-8.
[18] Gribble FM,Reimann F.Enteroendocrine cells:chemosensors in the intestinal epithelium[J].Annu Rev Physiol,2016,78:277-299.DOI:10.1146/annurev-physiol-021115-105439.
[19] Zhou L,Yang H,Okoro EU,et al.Up-regulation of cholesterol absorption is a mechanism for cholecystokinin-induced hypercholesterolemia[J].J Biol Chem,2014,289(19):12989-12999.DOI:10.1074/jbc.M113.534388.
[20] Wang PY,Caspi L,Lam CK,et al.Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production[J].Nature,2008,452(7190):1012-1016.DOI:10.1038/nature06852.
[21] Cheung GW,Kokorovic A,Lam CK,et al.Intestinal cholecystokinin controls glucose production through a neuronal network[J].Cell Metab,2009,10(2):99-109.DOI:10.1016/j.cmet.2009.07.005.
[22] Zheng X,Chen T,Jiang R,et al.Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism[J].Cell Metab,2021,33(4):791-803 e7.DOI:10.1016/j.cmet.2020.11.017.
[23] Carabotti M,Scirocco A,Maselli MA,et al.The gut-brain axis:interactions between enteric microbiota,central and enteric nervous systems[J].Ann Gastroenterol,2015,28(2):203-209.DOI:10.37212/jcnos.610103.
[24] Duca FA,Bauer PV,Hamr SC,et al.Glucoregulatory relevance of small intestinal nutrient sensing in physiology,bariatric surgery,and pharmacology[J].Cell Metab,2015,22(3):367-380.DOI:10.1016/j.cmet.2015.07.003.
[25] Rastelli M,Cani PD,Knauf C.The gut microbiome influences host endocrine functions[J].Endocr Rev,2019,40(5):1271-1284.DOI:10.1210/er.2018-00280.
[26] Koh A,Molinaro A,Ståhlman M,et al.Microbially produced imidazole propionate impairs insulin signaling through mTORC1[J].Cell,2018,175(4):947-961.e17.DOI:10.1016/j.cell.2018.09.055.
[27] Fan Y,Pedersen O.Gut microbiota in human metabolic health and disease[J].Nat Rev Microbiol,2021,19(1):55-71.DOI:10.1038/s41579-020-0433-9.
[28] de Groot P,Nikolic T,Pellegrini S,et al.Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial[J].Gut,2021,70(1):92-105.DOI:10.1136/gutjnl-2020-322630.
[29] Vrieze A,Van Nood E,Holleman F,et al.Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome[J].Gastroenterology,2012,143(4):913-916 e7.DOI:10.1053/j.gastro.2012.06.031.
[30] Kootte RS,Levin E,Salojärvi J,et al.Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition[J].Cell Metab,2017,26(4):611-619.e6.DOI:10.1016/j.cmet.2017.09.008.