[1]王雪姣,丁晓颖,彭永德.短链脂肪酸在2型糖尿病发病机制中的作用[J].国际内分泌代谢杂志,2017,37(04):270-273.
 Wang Xuejiao,Ding Xiaoying,Peng Yongde..The role of short chain fatty acids in the pathogenesis of type 2 diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2017,37(04):270-273.
点击复制

短链脂肪酸在2型糖尿病发病机制中的作用()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
37
期数:
2017年04期
页码:
270-273
栏目:
综述
出版日期:
2017-07-20

文章信息/Info

Title:
The role of short chain fatty acids in the pathogenesis of type 2 diabetes mellitus
作者:
王雪姣丁晓颖彭永德
200080 上海交通大学附属第一人民医院内分泌代谢科
Author(s):
Wang Xuejiao Ding Xiaoying Peng Yongde.
Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiaotong University,Shanghai 200080, China
关键词:
短链脂肪酸 肠道菌群 肥胖 代谢综合征 2型糖尿病
Keywords:
Short chain fatty acids Gut microbiota Obesity Metabolic syndrome Type 2 diabetes mellitus
文献标志码:
A
摘要:
短链脂肪酸(SCFA)是由肠道菌群发酵膳食纤维产生的代谢产物,饮食结构变化通过改变肠道菌群结构与功能,影响SCFA的产生。近来研究发现,SCFA通过调节胃肠道激素分泌、胰岛素敏感性及糖、脂代谢,参与了2型糖尿病的发生、发展。对SCFA的深入研究,为阐明2型糖尿病发病机制及其预防和治疗提供了新的思路和靶点。
Abstract:
Short chain fatty acids(SCFA)are metabolic products of the gut microbiota fermentation of dietary fiber, and are influenced by the structure and function of gut microbiota with the change of diet. Recent studies have indicated that SCFA may play an important role in the pathogenesis of type 2 diabetes mellitus, which is involved in the regulation of secretion of gut hormones, insulin sensitivity, glucose and lipid metabolism and so on. Further researches related to SCFA may provide a new measure and target to clarify the pathogenesis of type 2 diabetes mellitus as well as to prevent and treat it.

参考文献/References:

[1] Misra A, Singhal N, Khurana L. Obesity, the metabolic syndrome, and type 2 diabetes in developing countries: role of dietary fats and oils[J].J Am Coll Nutr,2010,29(3 Suppl):289S-301S.
[2] Cummings JH, Pomare EW, Branch WJ,et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J].Gut,1987,28(10):1221-1227.
[3] Nilsson U, Nyman M. Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility[J].Br J Nutr,2005,94(5):705-713.
[4] Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health[J].J AOAC Int,2012,95(1):50-60.
[5] Lin HV, Frassetto A, Kowalik EJ Jr,et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J].PLoS One,2012,7(4):e35240. DOI:10.1371/journal.pone.0035240.
[6] Le Poul E, Loison C, Struyf S,et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J].J Biol Chem,2003,278(28):25481-25489. DOI:10.1074/jbc.M301403200.
[7] Blaut M. Ecology and physiology of the intestinal tract[J].Curr Top Microbiol Immunol,2013,358,247-272. DOI:10.1007/82_2011_192.
[8] Eckburg PB, Bik EM, Bernstein CN,et al. Diversity of the human intestinal microbial flora[J].Science,2005,308(5728):1635-1638. DOI:10.1126/science.1110591.
[9] Yang J, Martínez I, Walter J,et al. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production[J].Anaerobe,2013,23:74-81. DOI:10.1016/j.anaerobe.2013.06.012.
[10] Jakobsdottir G, Xu J, Molin G,et al. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects[J].PLoS One,2013,8(11):e80476. DOI: 10.1371/journal.pone.0080476.
[11] Duncan SH, Belenguer A, Holtrop G,et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces[J].Appl Environ Microbiol,2007,73(4):1073-1078. DOI:10.1128/AEM.02340-06.
[12] Fernandes J, Su W, Rahat-Rozenbloom S,et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans[J].Nutr Diabetes,2014,4:e121. DOI: 10.1038/nutd.2014.23.
[13] Turnbaugh PJ, Ley RE, Mahowald MA,et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J].Nature,2006,444(7122):1027-1031. DOI:10.1038/nature05414.
[14] den Besten G, Bleeker A, Gerding A,et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J].Diabetes,2015,64(7):2398-2408. DOI:10.2337/db14-1213.
[15] den Besten G, Havinga R, Bleeker A,et al. The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome[J].PLoS One,2014,9(9):e107392. DOI:10.1371/journal.pone.0107392.
[16] Kimura I, Ozawa K, Inoue D,et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J].Nat Commun,2013,4:1829. DOI:10.1038/ncomms2852.
[17] Beauvieux MC, Roumes H, Robert N,et al. Butyrate ingestion improves hepatic glycogen storage in the re-fed rat[J].BMC Physiol,2008,8:19. DOI:10.1186/1472-6793-8-19.
[18] Robertson MD, Bickerton AS, Dennis AL,et al. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism[J].Am J Clin Nutr,2005,82(3):559-567.
[19] Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome[J].Cell Metab,2009,9(5):407-416. DOI:10.1016/j.cmet.2009.03.012.
[20] Freeland KR, Wolever TM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha[J].Br J Nutr,2010,103(3):460-466. DOI:10.1017/S0007114509991863.
[21] Priyadarshini M, Villa SR, Fuller M,et al. An acetate-specific GPCR, FFAR2, regulates insulin secretion[J].Mol Endocrinol,2015,29(7):1055-1066. DOI:10.1210/me.2015-1007.
[22] Winzell MS, Ahrén B. G-protein-coupled receptors and islet function-implications for treatment of type 2 diabetes[J].Pharmacol Ther,2007,116(3):437-448. DOI:10.1016/j.pharmthera.2007.08.002.
[23] Tang C, Ahmed K, Gille A,et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes[J].Nat Med,2015,21(2):173-177. DOI:10.1038/nm.3779.
[24] McNelis JC, Lee YS, Mayoral R,et al. GPR43 potentiates β-cell function in obesity[J].Diabetes,2015,64(9):3203-3217. DOI:10.2337/db14-1938.
[25] Tolhurst G, Heffron H, Lam YS,et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J].Diabetes,2012,61(2):364-371. DOI:10.2337/db11-1019.
[26] Psichas A, Sleeth ML, Murphy KG,et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents[J].Int J Obes(Lond),2015,39(3):424-429. DOI:10.1038/ijo.2014.153.
[27] Cani PD, Lecourt E, Dewulf EM,et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal[J].Am J Clin Nutr,2009,90(5):1236-1243. DOI:10.3945/ajcn.2009.28095.
[28] Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults[J].Am J Clin Nutr,2009,89(6):1751-1759. DOI:10.3945/ajcn.2009.27465.
[29] Li Y, Kokrashvili Z, Mosinger B,et al. Gustducin couples fatty acid receptors to GLP-1 release in colon[J].Am J Physiol Endocrinol Metab,2013,304(6):E651-E660. DOI:10.1152/ajpendo.00471.2012.

相似文献/References:

[1]姚霜霜,张翼飞,张志国,等.小檗碱改善代谢性疾病的肠道相关机制[J].国际内分泌代谢杂志,2014,(06):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
 Yao Shuangshuang,Zhang Yifei,Zhang Zhiguo,et al.The gut-related mechanisms of berberine in the treatment of metabolic diseases[J].International Journal of Endocrinology and Metabolism,2014,(04):386.[doi:10.3760/cma.j.issn.1673-4157.2014.06.007]
[2]顾子良 王洪东 朱大龙 毕艳.2型糖尿病治疗方法对肠道菌群的影响[J].国际内分泌代谢杂志,2018,38(04):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
 Gu Ziliang,Wang Hongdong,Zhu Dalong,et al.Effects of treatment of type 2 diabetes on gut microbiota[J].International Journal of Endocrinology and Metabolism,2018,38(04):254.[doi:10.3760/cma.j.issn.1673-4157.2018.04.009]
[3]陈俊秀 杜宏.肠道菌群与口服降糖药物[J].国际内分泌代谢杂志,2018,38(05):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
 Chen Junxiu*,Du Hong.Intestinal microbiota and oral hypoglycemic agents[J].International Journal of Endocrinology and Metabolism,2018,38(04):305.[doi:10.3760/cma.j.issn.1673-4157.2018.05.005]
[4]夏心怡 张洪梅.肠道菌群及其代谢产物调节糖脂代谢的机制[J].国际内分泌代谢杂志,2018,38(05):309.[doi:10.3760/cma.j.issn.1673-4157.2018.05.006]
 Xia Xinyi,Zhang Hongmei.Regulating mechanism of glycolipid metabolism by intestinal microbiota and its metabolites[J].International Journal of Endocrinology and Metabolism,2018,38(04):309.[doi:10.3760/cma.j.issn.1673-4157.2018.05.006]
[5]周晓聪 张晓黎.益生菌与妊娠糖尿病的相关性[J].国际内分泌代谢杂志,2018,38(05):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
 Zhou Xiaocong,Zhang Xiaoli.Relationship between probiotics and gestational diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2018,38(04):313.[doi:10.3760/cma.j.issn.1673-4157.2018.05.007]
[6]万仕炜 郁梅 方彭华 张真稳.小檗碱改善胰岛素抵抗的相关机制[J].国际内分泌代谢杂志,2018,38(05):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
 Wan Shiwei*,Yu Mei,Fang Penghua,et al.Related mechanism of berberine in improving insulin resistance[J].International Journal of Endocrinology and Metabolism,2018,38(04):333.[doi:10.3760/cma.j.issn.1673-4157.2018.05.012]
[7]张晓蕾 敖娜 都健.维生素D以肠道菌群为靶点治疗非酒精性脂肪性肝病的 研究进展[J].国际内分泌代谢杂志,2019,39(05):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
 Zhang Xiaolei,Ao Na,Du Jian.Advances in the treatment of non-alcoholic fatty liver disease with vitamin D targeting intestinal flora[J].International Journal of Endocrinology and Metabolism,2019,39(04):311.[doi:10.3760/cma.j.issn.1673-4157.2019.05.006]
[8]叶凌霞 洪洁.多囊卵巢综合征与肠道菌群[J].国际内分泌代谢杂志,2019,39(05):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]
 Ye Lingxia,Hong Jie.Polycystic ovary syndrome and gut microbiota[J].International Journal of Endocrinology and Metabolism,2019,39(04):345.[doi:10.3760/cma.j.issn.1673-4157.2019.05.014]
[9]陈莹 刘子荣.减重手术改善代谢的新机制[J].国际内分泌代谢杂志,2020,40(04):275.[doi:10.3760/cma.j.issn.1673-4157.2020.04.014]
 Chen Ying,Liu Zirong.The novel mechanisms of weight-loss surgery in improving metabolism[J].International Journal of Endocrinology and Metabolism,2020,40(04):275.[doi:10.3760/cma.j.issn.1673-4157.2020.04.014]
[10]詹永颖,黄汉伟.益生菌对妊娠期糖尿病的影响及相关机制[J].国际内分泌代谢杂志,2021,41(02):124.[doi:10.3760/cma.j.cn121383-20200821-08037]
 Zhan Yongying,Huang Hanwei..Effects and mechanism of probiotics on gestational diabetes mellitus[J].International Journal of Endocrinology and Metabolism,2021,41(04):124.[doi:10.3760/cma.j.cn121383-20200821-08037]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81370904); 上海市卫计委重点项目(201440033); 上海交通大学医工交叉项目(YG2015ZD08,YG2015MS30); 上海交通大学医学院王宽诚医学奖励基金项目(2015); 上海松江科委项目(15SJGG54); 上海松江卫计委攀登医学合作项目(0702N14003); 上海申康医院发展中心临床科技创新项目(SHDC12015304)
通信作者:彭永德,Email: pengyongde0908@126.com
更新日期/Last Update: 2017-07-30