参考文献/References:
[1] Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor suppressor protein[J].Curr Opin Cell Biol, 2001,13(3):332-337.DOI:10.1016/S0955-0674(00)00216-7.
[2] Dai Q, Yin Y, Liu W,et al. Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells[J].Int J Biochem Cell Biol,2013,45(7):1468-1478. DOI: 10.1016/j.biocel.2013.04.015.
[3] Vousden KH, Ryan KM. p53 and metabolism[J].Nat Rev Cancer,2009,9(10):691-700. DOI: 10.1038/nrc2715.
[4] Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2[J].Cancer Res,2012,72(2):560-567. DOI: 10.1158/0008-5472.CAN-11-1215.
[5] Hu W, Zhang C, Wu R,et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidantfunction[J].Proc Natl Acad Sci U S A,2010,107(16):7455-7460. DOI: 10.1073/pnas.1001006107.
[6] Iwao C, Shidoji Y. Upregulation of energy metabolism-related, p53-target TIGAR and SCO2 in HuH-7 cellswith p53 mutation by geranylgeranoic acid treatment[J].Biomed Res,2015,36(6):371-381. DOI: 10.2220/biomedres.36.371.
[7] Xiao WJ, Ma T, Ge C,et al. Modulation of the pentose phosphate pathway alters phase Ⅰ metabolism of testosterone and dextromethorphan in HepG2 cells[J].Acta Pharmacol Sin,2015,36(2):259-267. DOI: 10.1038/aps.2014.137.
[8] Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3(GSK3): inflammation, diseases, and therapeutics[J].Neurochem Res,2007,32(4-5):577-595.DOI:10.1007/s11064-006-9128-5.
[9] Kim NH, Cha YH, Kang SE,et al. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells[J].Cell Cycle,2013,12(10):1578-1587. DOI: 10.4161/cc.24739.
[10] Camera DM, Hawley JA, Coffey VG. Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1α mRNA in skeletal muscle[J].Eur J Appl Physiol,2015,115(6):1185-1194.DOI: 10.1007/s00421-015-3116-x.
[11] Tam BT, Siu PM. Autophagic cellular responses to physical exercise in skeletal muscle[J].Sports Med,2014,44(5):625-640. DOI: 10.1007/s40279-013-0140-z.
[12] Goldstein I, Yizhak K, Madar S,et al. p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production[J].Cancer Metab,2013,1(1):9.DOI: 10.1186/2049-3002-1-9.
[13] Zhang P, Tu B, Wang H,et al. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion[J].Proc Natl Acad Sci U S A,2014,111(29):10684-10689. DOI: 10.1073/pnas.1411026111.
[14] Sahin E, Colla S, Liesa M,et al. Telomere dysfunction induces metabolic and mitochondrial compromise[J].Nature,2011,470(7334):359-365. DOI: 10.1038/nature09787.
[15] Liu Y, He Y, Jin A,et al. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation[J].Proc Natl Acad Sci U S A,2014,111(23):E2414-E2422. DOI: 10.1073/pnas.1315605111.
[16] Assaily W, Rubinger DA, Wheaton K,et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress[J].Mol Cell,2011,44(3):491-501. DOI: 10.1016/j.molcel.2011.08.038.
[17] Goldstein I, Rotter V. Regulation of lipid metabolism by p53-fighting two villains with one sword[J].Trends Endocrinol Metab,2012,23(11):567-575.DOI: 10.1016/j.tem.2012.06.007.
[18] Goldstein I, Ezra O, Rivlin N,et al. p53, a novel regulator of lipid metabolism pathways[J].J Hepatol,2012,56(3):656-662. DOI: 10.1016/j.jhep.2011.08.022.
[19] Jiang P, Du W, Wang X,et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase[J].Nat Cell Biol,2011,13(3):310-316. DOI: 10.1038/ncb2172.
[20] Wang L, Jiang Z, Lei XG. Knockout of SOD1 alters murine hepatic glycolysis, gluconeogenesis, and lipogenesis[J]. Free Radic Biol Med,2012,53(9):1689-1696. DOI: 10.1016/j.freeradbiomed.2012.08.570.
[21] Li H, Jogl G. Structural and biochemical studies of TIGAR(TP53-induced glycolysis and apoptosis regulator)[J].J Biol Chem,2009,284(3):1748-1754. DOI: 10.1074/jbc.M807821200.
[22] Wang DB, Kinoshita C, Kinoshita Y,et al. p53 and mitochondrial function in neurons[J].Biochim Biophys Acta,2014,1842(8):1186-1197.DOI: 10.1016/j.bbadis.2013.12.015.
[23] Aquilano K, Baldelli S, Pagliei B,et al. p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance[J].Antioxid Redox Signal,2013,18(4):386-399.DOI: 10.1089/ars.2012.4615.
[24] Bergeaud M, Mathieu L, Guillaume A,et al. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F1F0-ATP synthase[J].Cell Cycle,2013,12(17):2781-2793. DOI: 10.4161/cc.25870.
[25] Maddocks OD, Vousden KH. Metabolic regulation by p53[J].J Mol Med(Berl),2011,89(3):237-245. DOI: 10.1007/s00109-011-0735-5.
[26] Song Y, Wan X, Gao L,et al. Activated PKR inhibits pancreatic β-cell proliferation through sumoylation-dependent stabilization of P53[J].Mol Immunol,2015,68(2 Pt A):341-349. DOI: 10.1016/j.molimm.2015.09.007.
[27] Yin Z, Fan L, Huang G,et al. The possible role of ribosomal protein S6 kinase 4 in the senescence of endothelial progenitor cells in diabetes mellitus[J].Cardiovasc Diabetol,2012,11:12. DOI: 10.1186/1475-2840-11-12.
[28] Tornovsky-Babeay S, Dadon D, Ziv O,et al. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells[J].Cell Metab,2014,19(1):109-121. DOI: 10.1016/j.cmet.2013.11.007.
[29] Wang K, Fu XY, Fu XT,et al. DSePA antagonizes high glucose-induced neurotoxicity: evidences for DNA damage-mediated p53 phosphorylation and MAPKs and AKT pathways[J].Mol Neurobiol,2016,53(7):4363-4374. DOI: 10.1007/s12035-015-9373-1.
[30] Leblond F, Poirier S, Yu C,et al. The anti-hypercholesterolemic effect of low p53 expression protects vascular endothelial function in mice[J].PLoS One,2014,9(3):e92394. DOI: 10.1371/journal.pone.0092394.