[1]周楠,李晓南.乙酰辅酶A羧化酶在内分泌代谢性 疾病中的作用[J].国际内分泌代谢杂志,2016,36(03):191-194.[doi:10.3760/cma.j.issn.1673-4157.2016.03.12]
 Zhou Nan,Li Xiaonan..The role of Acetyl-CoA carboxylase in endocrinal and metabolic disease[J].International Journal of Endocrinology and Metabolism,2016,36(03):191-194.[doi:10.3760/cma.j.issn.1673-4157.2016.03.12]
点击复制

乙酰辅酶A羧化酶在内分泌代谢性 疾病中的作用()
分享到:

《国际内分泌代谢杂志》[ISSN:1673-4157/CN:12-1383/R]

卷:
36
期数:
2016年03期
页码:
191-194
栏目:
综述
出版日期:
2016-05-20

文章信息/Info

Title:
The role of Acetyl-CoA carboxylase in endocrinal and metabolic disease
作者:
周楠李晓南
210008 南京医科大学附属南京儿童医院儿童保健科
Author(s):
Zhou Nan Li Xiaonan.
Department of Children Health Care, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008,China
关键词:
乙酰辅酶A羧化酶 脂肪酸合成 内分泌代谢性疾病
Keywords:
Acetyl-CoA carboxylase Fatty acid synthesis Endocrinal and metabolic diseases
DOI:
10.3760/cma.j.issn.1673-4157.2016.03.12
摘要:
乙酰辅酶A羧化酶(ACC)是脂肪酸合成的限速酶,ACC可以催化乙酰辅酶A生成丙二酰辅酶A,而后者作为长链脂肪酸合成的前体,既为脂肪酸合成提供供体,又可变构抑制脂肪酸转运至线粒体氧化,因此ACC在脂肪酸合成和代谢中发挥至关重要的作用。因其特殊的生物学功能,ACC在肥胖、非酒精性脂肪性肝病、糖尿病、高尿酸血症等内分泌代谢性疾病中的作用日趋重要,可成为多种代谢性疾病潜在的治疗靶点。
Abstract:
Acetyl-CoA carboxylase(ACC)is a speed limit enzyme of fatty acid synthesis. It catalyzes acetyl-CoA to generate malony CoA, which is the precusor of the long chain fatty acid. Furthermore, malony CoA can not only provide donor for fatty acid synthesis, but also as an allosteric inhibitor of fatty acid transport into mitochondria for oxidation. Therefore, ACC plays an vital role in fatty acid synthesis and metabolism. Because of its special biological functions, ACC plays an increasingly important role in obesity, nonalcoholic fatty liver disease, diabetes, hyperuricemia and can be a potential therapeutic target of metabolic diseases.

参考文献/References:

[1] Long NM, Rule DC, Zhu MJ, et al. Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots[J]. J Anim Sci,2012,90(7):2201-2210. DOI: 10.2527/jas.2011-4343.
[2] Ji C, Dai Y, Jiang W, et al. Postnatal overfeeding promotes early onset and exaggeration of high-fat diet-induced nonalcoholic fatty liver disease through disordered hepatic lipid metabolism in rats[J].J Nutr Biochem,2014, 25(11):1108-1116. DOI: 10.1016/j.jnutbio.2014.06.010.
[3] Chang CC, Yang MH, Tung HC, et al. Resveratrol exhibits differential protective effects on fast- and slow-twitch muscles in streptozotocin-induced diabetic rats[J]. J Diabetes,2014,6(1):60-67. DOI: 10.1111/1753-0407.12072.
[4] Kelly DM, Nettleship JE, Akhtar S, et al. Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice [J]. Life Sci, 2014,109(2):95-103. DOI: 10.1016/j.lfs.2014.06.007.
[5] Yao X, Hou S, Zhang D, et al. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver[J]. Cell Bio Sci, 2014,4:38. DOI: 10.1186/2045-3701-4-38.
[6] Lai CS, Liao SN, Tsai ML, et al. Calebin-A inhibits adipogenesis and hepatic steatosis in high-fat diet- induced obesity via activation of AMPK signaling[J]. Mol Nutr Food Res,2015,59(10):1883-1895. DOI: 10.1002/mnfr.201400809.
[7] Dieguez C, Fruhbeck G, Lopez M. Hypothalamic lipids and the regulation of energy homeostasis[J]. Obes Facts, 2009,2(2):126-135. DOI: 10.1159/000209251.
[8] Chan CY, Wei L, Castro-Munozledo F, et al.(-)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression[J]. Life Sci, 2011,89(21-22):779-785.DOI: 10.1016/j.lfs.2011.09.006.
[9] Zhang XH, Huang B, Choi SK, et al. Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation[J]. Nutr Res Pract,2012,6(4):286-293.DOI: 10.4162/nrp.2012.6.4.286.
[10] Gomez-Zorita S, Fernandez-Quintela A, Macarulla MT, et al. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress[J]. Br J Nutr, 2012,107(2):202-210. DOI: 10.1017/s0007114511002753.
[11] Jeon BT, Heo RW, Shin HJ, et al. Attenuation by a Vigna nakashimae extract of nonalcoholic fatty liver disease in high-fat diet-fed mice[J]. Biosci Biotechnol Biochem,2014,78(3):482-489. DOI: 10.1080/09168451.2014.882753.
[12] Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin[J]. Nat Med,2013,19(12):1649-1654. DOI: 10.1038/nm.3372.
[13] Sundaresan A, Radhiga T, Pugalendi KV. Effect of ursolic acid and rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice[J]. Eur J Pharmacol, 2014,741:297-303.DOI: 10.1016/j.ejphar.2014.07.032.
[14] Videla LA, Fernandez V, Cornejo P, et al. T(3)-induced liver AMP-activated protein kinase signaling: redox dependency and upregulation of downstream targets[J]. World J Gastroenterol,2014,20(46):17416-17425.DOI: 10.3748/wjg.v20.i46.17416.
[15] Park S, Hwang IW, Makishima Y, et al. Spot14/Mig12 heterocomplex sequesters polymerization and restrains catalytic function of human acetyl-CoA carboxylase 2[J]. J Mol Recognit,2013,26(12):679-688.DOI:10.1002/jmr.2313.
[16] Chen QL, Luo Z, Shi X, et al. Dietary methimazole-induced hypothyroidism reduces hepatic lipid deposition by down-regulating lipogenesis and up-regulating lipolysis in Pelteobagrus fulvidraco[J]. Gen Comp Endocrinol, 2015,217-218:28-36. DOI: 10.1016/j.ygcen.2015.05.006.
[17] Zhang X, Song Y, Feng M, et al. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver[J]. J Lipid Res, 2015,56(5):963-971.DOI: 10.1194/jlr.M047654.
[18] Lin Z, Zhang B, Liu X, et al. Effects of chicory inulin on serum metabolites of uric acid, lipids, glucose, and abdominal fat deposition in quails induced by purine-rich diets[J]. J Med Food, 2014,17(11):1214-1221.DOI: 10.1089/jmf.2013.2991.
[19] Gaunt ER, Cheung W, Richards JE, et al. Inhibition of rotavirus replication by downregulation of fatty acid synthesis[J]. J Gen Virol, 2013,94(Pt 6):1310-1317. DOI: 10.1099/vir.0.050146-0.
[20] Dossi CG, Tapia GS, Espinosa A, et al. Reversal of high-fat diet-induced hepatic steatosis by n-3 LCPUFA: role of PPAR-alpha and SREBP-1c[J]. J Nutr Biochem, 2014,25(9):977-984. DOI: 10.1016/j.jnutbio.2014.04.011.
[21] Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis[J].Annu Rev Pathol,2010,5:145-171.DOI:10.1146/annurev-pathol-121808-102132.
[22] Jump DB, Torres-Gonzalez M, Olson LK. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation[J]. Biochem Pharmacol,2011,81(5):649-660.DOI:10.1016/j.bcp.2010.12.014.
[23] Schreurs M, van Dijk TH, Gerding A, et al. Soraphen, an inhibitor of the acetyl-CoA carboxylase system, improves peripheral insulin sensitivity in mice fed a high-fat diet[J]. Diabetes Obes Metab,2009,11(10): 987-991.DOI:10.1111/j.1463-1326.2009.01078.x.
[24] Olsen AM, Eisenberg BL, Kuemmerle NB, et al. Fatty acid synthesis is a therapeutic target in human liposarcoma[J]. Int J Oncol, 2010,36(5):1309-1314.
[25] Mao J, DeMayo FJ, Li H, et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis[J]. Proc Natl Acad Sci U S A, 2006,103(22):8552-8557.DOI: 10.1073/pnas.0603115103.
[26] Olson DP, Pulinilkunnil T, Cline GW, et al. Gene knockout of Acc2 has little effect on body weight, fat mass, or food intake[J]. Proc Natl Acad Sci U S A,2010,107(16):7598-7603.DOI: 10.1073/pnas.0913492107.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81273064)
更新日期/Last Update: 2016-05-20